Aislamiento e Identificación Molecular de Levaduras Autóctonas en Viñedo de la Variedad Malvasía Blanca

Isolation and Molecular Identification of Autochthonous Yeasts in the Vineyard of the Malvasía White

  • María Berradre
  • Luzmila Meza
  • Braulio Esteve-Zarzoso
  • Jorge Ortega
  • Betzabé Sulbarán
  • Graciela Ojeda
  • Graciela Ojeda
  • Laura Soto
  • Mairy Fuenmayor

Resumen

RESUMEN


Se realizó el aislamiento e identificación de levaduras nativas de un viñedo de la especie Vitis vinifera variedad Malvasía blanca, en la Región Zuliana. Se muestrearon aséptica y aleatoriamente bayas y partes de la planta (hojas, raquis, corteza y suelo), de un total de 123 plantas, correspondientes a un viñedo de la variedad de uva Malvasía. A aproximadamente a 500m del viñedo, se encuentra la bodega. La identificación de las levaduras aisladas en el viñedo se realizó por técnicas moleculares mediante PCR-RFLP, sometiendo los productos amplificados a un análisis de restricción con las enzimas Hinf I, Hae III, CfoI y DdeI.  La distribución de las levaduras en los diversos sustratos fue en el suelo 60% Hanseniaspora guillermondii y 40% Hanseniaspora uvarum, en la corteza 90% Candida sake y 10% Hanseniaspora uvarum, en hojas 100% por Rhodotorula mucilagenosa, en raquis 100% por Aureobasidium pullulans y en las bayas 96% Rhodotorula mucilagenosa y 4% Aureobasidium pullulans.  En el viñedo están ampliamente difundidos los géneros Ascomycetos Hanseniaspora, Candida y Aureobasidium y el género Basdiomycetos Rhodotorula, siendo las levaduras oxidativas Aureobasidium y Rhodotorula las de mayor difusión en el mismo, sin embargo, cabe destacar la presencia de levaduras fermentativas como los géneros Hanseniaspora y Candida, importantes levaduras con reconocido potencial enológico, que podrán ser utilizadas en futuras fermentaciones alcohólicas para obtener vinos con calidad única por ser fermentados con levaduras autóctonas adaptadas a clima tropical.


 Palabras clave: levaduras autóctonas, variedad Malvasía, PCR-RFLP 5,8S. 


 


ABSTRACT


The isolation and identification of native yeasts from a vineyard of the Vitis vinifera white variety Malvasia was carried out in Zulia, Venezuela. Aseptically and randomly, berries and parts of the plant (leaves, rachis, bark and soil) were sampled from a total of 123 plants, corresponding to a vineyard of the Malvasia grape variety. A winery is located at approximately 500 m from the vineyard. The identification of the yeasts isolated in the vineyard was carried out by molecular techniques by PCR-RFLP, subjecting the amplified products to a restriction analysis with the enzymes Hinf I, Hae III, CfoI and DdeI. The distribution of the yeasts in the different substrates was in the soil 60% Hanseniaspora guillermondii and 40% Hanseniaspora uvarum, in the bark 90% Candida sake and 10% Hanseniaspora uvarum, in leaves 100% by Rhodotorula mucilagenosa, in rachis 100% by Aureobasidium pullulans and in berries 96% Rhodotorula mucilagenosa and 4% Aureobasidium pullulans. In the vineyard, the Ascomycetos type Hanseniaspora, Candida and Aureobasidium and the genus Basdiomycetos Rhodotorula are widely spread, with the oxidative yeasts Aureobasidium and Rhodotorula being the most widespread, however, the presence of fermentative yeasts such as the Hanseniaspora  and Candida genera, important yeasts with recognized oenological potential, which can be used in future alcoholic fermentations to obtain wines with unique quality by being fermented with native yeasts adapted to tropical climate.


Key words: native yeasts, Malvasía variety, PCR-RFLP 5.8S.

Citas

Barrajón, N., Arévalo-Villena, M., Rodríguez-Aragón, L. & Briones, A. (2009). Ecological study of wine yeast in inoculated vats from La Mancha region. Food Control, 20, 778–783.
Beltrán, G., Torija, M., Novo, M., Ferrer, N., Poblet, M., Guillamón, J., Rozès, N. & Mas, A. (2002). Analysis of yeast populations during alcoholic fermentation: A sixyear follow-up study. Systematic and Applied Microbiology, 25, 287-293.
Boynton, P. & Greig, D. (2016). Species richness influences wine ecosystem function through a dominant species. Fungal ecology, 22,61-72.
Carrascosa, A., Muñoz, R. & González, R. (2005). Microbiología del Vino. Primera edición. Antonio Madrid Vicente (ed), España.
Chavan, P., Mane, S., Kulkarni, G., Shaikh, S., Ghormade, V., Nerkar, DP., Shouche, Y. & Deshpande, MV. (2009). Natural yeast flora of different varieties of grapes used for wine making in India. Food Microbiology, 26, 801-808.
Cordero-Bueso, G., Arroyo, T., Serrano, A. & Valero, E. (2011). Influence of different floor management strategies of the vineyard on the natural yeast population associated with grape berries. International Journal of Food Microbiology, 148, 23-29.
Esteve-Zarzoso, B., Belloch, C., Uruburu, F. & Querol, A. (1999). Identification of yeast by RFLP analysis of the 5,8S rRNA gene and the two ribosomal internal transcribed spacers. International Journal of Systematic Bacteriology, 49, 329-337.
Francesca, N., Gaglio, R., Alfonzo, A., Settanni, L., Corona, O., Mazzei, P., Romano, R., Piccolo, A. & Moschetti, G. (2016). The wine: typicality or mere diversity? The effect of spontaneous fermentations and biotic factors on the characteristics of wine. Agriculture and Agricultural Science Procedia, 8, 769-773.
Grangeteau, C., Gerhards, D., Rousseaux, S., Wallbrunn, Ch., Alexandre, H. & Guilloux-Benatier, M. (2015). Diversity of yeast strains of the genus Hanseniaspora in the winery environment: What is their involvement in grape must fermentation?. Food microbiology, 50, 70-77.
Guillamón, J., Sábate, J., Barrio, E., Cano, J. & Querol, A. (1998). Rapid identification of wine yeast species base on RFLP analysis of the ribosomal internal transcribed spacer (ITS) region. Archives of Microbiology, 169, 387-392.
Li, S., Cheng, C., Li, Z., Chen, J., Yan, B., Han, B. & Reeves, M. (2010). Yeast species associated with wine grapes in China. International Journal of Food Microbiology, 138, 85-90.
Milanovic, V., Comitini, F. & Ciani, M. (2013) Grape berry yeast communities: Influence of fungicide treatments. International Journal of Food Microbiology, 161, 240-246.
Molero, T., Guerrero, R. & Martínez, E. (2007). Caracterización del sistema de producción de uva de vino en el Municipio Mara, estado Zulia. Venezuela. Revista de la Facultad de Agronomía de la Universidad del Zulia, 24, 343-366.
Moreira, N., Pina, C., Mendes, F., Couto, J., Hogg, T. & Vasconcelos, I. (2011). Volatile compounds contribution of Hanseniaspora guillermondii and Hanseniaspora uvarum during red wine vinifications. Food Control, 22, 662-667.
Norma Venezolana COVENIN 1126-89. (1989). Identificación y preparación de muestras para el análisis microbiológico. 7 p.
Norma Venezolana COVENIN 1337-90. (1990). Método para recuento de Mohos y Levaduras. 6 p.
Portillo, MC. & Mas, A. (2016). Analysis of microbial diversity and dynamics during wine fermentation of Grenache grape variety by high-throughput barcoding sequencing. LWT-Food Science and Technology, 72, 317-321.
Querol, A., Barrio, E. & Ramón, D. (1992). A comparative study of different methods of yeast strain characterization. Systematic and Applied Microbiology, 15, 439-446.
Raspor, P., Milek, D., Polanc, J., Možina, S. & Čadež, N. (2006). Yeasts isolated from three varieties of grapes cultivated in different locations of the Dolenjska vine-growing region, Slovenia. International Journal of Food Microbiology, 109, 97-102.
Sábate, J., Cano, J., Esteve-Zarzoso, B. & Guillamón, J. (2002). Isolation and identification of yeasts associated with vineyard and winery by RFLP analysis of ribosomal genes and mitochondrial ADN. Microbiological Research, 157, 267-274.
Sun, H., Ma, H., Hao, M., Pretorius, I. & Chen, S. (2009). Identification of yeast population dynamics of spontaneous fermentation in Beijing wine region, China. Annals of microbiology, 59, 69-76.
Tristezza, M., Vetrano, C., Bleve, G., Spano, G., Capozzi, V., Logrieco, A., Mita, G. & Grieco, F. (2013). Biodiversity and safety aspects of yeast strains characterized from vineyards and spontaneous fermentations in the Apulia Region, Italy. Food microbiology, 36, 335-342.
Publicado
2018-04-30
Sección
Ciencias Químicas