Comparación de Métodos de Interpolación para la Estimación de Temperatura del Reservorio CEASA

Comparison of Interpolation Methods for the Estimation of Temperature of Ceasa Reservoir

  • Kalina Fonseca Largo
  • Mercy IlbayYupa
  • Luis Bustillos
  • Sara Barbosa
  • Alisson Iza

Resumen

La interpolación de temperatura en cuerpos de agua permite realizar predicciones de puntos de muestreo que no presentan datos. En la presente investigación se evaluaron 12 métodos de interpolación para estimar la temperatura del reservorio del Centro de Experimentación Académica Salache (CEASA) de la Universidad Técnica de Cotopaxi. Los datos recolectados en campo fueron interpolados aleatoriamente y comparados con los reales en base al error medio (EM), error absoluto medio (MAE), error medio cuadrático (MSE), raíz del error cuadrático (RMSE) y coeficiente de determinación (R2). La interpolación más apropiada para la representación de la variable temperatura en el reservorio fue el del método del Polinomio Local con un MSE de 0,22 y RMSE de 0,47 y R2 de 0,53. Este método se puede utilizar para obtener datos de temperatura del reservorio, disminuyendo costos de tiempo y dinero que demandaría el levantamiento de información en campo.


 Palabras clave: Interpolación, Temperatura, Polinomio Local, Reservorio CEASA. 


 


ABSTRACT


The interpolation of temperature in bodies of water allows making predictions of sampling points that do not present data. In the present investigation, 12 interpolation methods were evaluated to estimate the reservoir temperature of the Salache Academic Experimentation Center (CEASA) at the Technical University of Cotopaxi. The data collected in the field were randomly interpolated and compared with the real ones based on the mean error (MS), mean absolute error (MAE), mean square error (MSE), the root of the quadratic error (RMSE) and coefficient of determination (R2). The most appropriate interpolation for the representation of the variable temperature in the reservoir was the Local Polynomial method with an MSE of 0.22 and RMSE of 0.47 and R2 of 0.53. This method can be used to obtain reservoir temperature data, decreasing the time and money costs that gathering information would require in the field require.


Key words: Interpolation, Temperature, Local Polynomial, CEASA Reservoir.

Citas

Adhikary, P. P. & Dash, C. J. (2017). Comparison of deterministic and stochastic methods to predict spatial variation of groundwater depth. Applied Water Science, 7(1), 339-348. https://doi.org/10.1007/s13201-014-0249-8.
Boer, E. P., de Beurs, K. M. & Hartkamp, A. D. (2001). Kriging and thin plate splines for mapping climate variables. International Journal of Applied Earth Observation and Geoinformation, 3(2), 146–154.
Brus, D.J., de Gruijter, J.J., Marsman, B.A., Visschers, B.A., Bregt, A.K. & Breeuwsma, A. (1996). The performance of spatial interpolation methods and choropleth maps to estimate properties at points: a soil survey case study. Environmetrics, 7, 1–16.
Collins, F.C. & Bolstad, P.V. (1996) A comparison of spatial interpolation techniques in temperature estimation. Proceedings, Third International Conference/Workshop on Integrating GIS and Environmental Modeling, Santa Fe, NM. National Center for Geographic Information and Analysis, Santa Barbara, Santa Barbara, CA.
Chávez, L.S.A. & Moreano, R. (2013). Sistema de Información para la Interpolación de Datos de Temperatura y Precipitación del Ecuador. Revista Politécnica, 32.
Chen, S., Cowan, C. F. & Grant, P. M. (1991). Orthogonal least squares learning algorithm for radial basis function networks. IEEE Transactionson neural networks, 2(2), 302-309.
Dirks, K.N., Hay, J.E., Stow, C.D. & Harris, D. (1998). High-resolution studies of rainfall on Norfolk Island Part II: interpolation ofrain fall data. Journal of Hydrology, 208, 187–193.
Fallas, J. (2007). Modelos digitales de elevación: Teoría, métodos de interpolación y aplicaciones. Mapealo. Com, San José, Costa Rica, 83. https://www.researchgate.net/profile/Jorge_Fallas5/publication/229021279_Modelos_digitales_de_elevacion_Teoria_metodos_de_interpolacion_y_aplicaciones/links/55a529ef08ae00cf99c94ee6/Modelos-digitales-de-elevacion-Teoria-metodos-de-interpolacion-y-aplicaciones.pdf.
Hengl, T. (2007). A Practical Guide to Geostatistical Mapping of Environmental Variables. JRC Scientific and Technichal Reports. Office for Official Publication of the European Communities, Luxembourg.
Hernandez-Stefanoni, J.L. & Ponce-Hernandez, R. (2006). Mapping the spatial variability of plant diversity in a tropical forest: comparison of spatial interpolation methods. Environmental Monitoring and Assessment 117, 307–334.
llbay Yupa, M., Largo, K. F., Miguitama, A. Q., Landázuri, R. L. & Toasa, J.T. (2017). Estimación de datos faltantes de precipitación en la Subcuenca del río Patate. Revista Bases de la Ciencia, 2 (3), 37-49.
Isaaks, E.H. & Srivastava, R.M. (1989). Applied Geostatistics. Oxford University Press, New York, p. 561.
Laslett, G.M. (1994). Kriging and splines: an empirical comparison of their predictive performance in some applications. Journal of the American Statistical Association, 89, 391–400.
Li, J. & Heap, A. D. (2008). A review of spatial interpolation methods for environmental scientists. Geosciences Australia, Record 2008/23.
Li, J. & Heap, A.D. (2011). A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecological Informatics, 6(3), 228-241. https://doi.org/10.1016/j.ecoinf.2010.12.003.
Nalder, I.A. & Wein, R.W. (1998). Spatial interpolation of climatic normals: test of a new method in the Canadian boreal forest. Agricultural and Forest Meteorology, 92, 211–225.
Osorio, D.S.Á., Contreras, A.C. & León, J.C.M. (2011). Modelos digitales batiMétricos generados por Métodos de interpolación idw, kriging, shepard y b-spline en el archipiélago de islas del rosario. UD y la geomática, 5, 3–14.
Schloeder, C.A., Zimmerman, N.E. & Jacobs, M.J. (2001). Comparison of methods for interpolating soil properties using limited data. Soil Science Society of American Journal, 65, 470–479.
Shtiliyanova, A., Bellocchi, G., Borras, D., Eza, U., Martin, R. & Carrère, P. (2017). Kriging-based approach to predict missing air temperature data. Computers and Electronics in Agriculture, 142, 440–449. https://doi.org/10.1016/j.compag.2017.09.033.
Stahl, K., Moore, R.D., Floyer, J.A., Asplin, M.G. & McKendry, I.G. (2006). Comparison of approaches for spatial interpolation of daily air temperature in a large region with complex topography and highly variable station density. Agricultural and Forest Meteorology, 139, 224–236.
Theil, H. (1992). A rank-invariant method of linear and polynomial regression analysis. In Henri Theil’s Contributions to Economics and Econometrics. Springer Netherlands.
Thompson, W.R. & Weil, C.S. (1952). On the construction of tables for moving-average interpolation. Biometrics, 8(1), 51-54.
Tveito, O.E,.Bjørdal, I., Skjelvåg, A.O. & Aune, B. (2005). A GIS-based agroecological decision system based on gridded climatology. Meteorological Applications,12, 57–68.
Tveito, O.E. & Førland, E. (1999). Mapping temperatures in Norway applying terrain information, geostatistics and GIS. Norsk Geografisk Tidsskrift.—Norwegian Journal of Geography, 53, 202–212.
Vohat, P., Gupta, V., Bordoloi, T.K., Naswa, H., Singh, G. & Singh, M. (2013). Analysis of different interpolation methods for uphole data using Surfer software. En10th Biennial International Conference & Exposition (pp. 23–25).
Voltz, M. & Webster, R. (1990). A comparison of kriging, cubic splines and classification for predicting soil properties from sample information. Journal of Soil Science, 41, 473–490.
Wu, J., Norvell, W.A. & Welch, R.M. (2006). Kriging on highly skewed data for DTPA extractable soil Zn with auxiliary information for pH and organic carbon. Geoderma, 134, 187–199.
Xiao, M., Zhang, G., Breitkopf, P., Villon, P. & Zhang, W. (2018). Extended Co-Kriging interpolation method based on multi-fidelity data. Applied Mathematics and Computation, 323, 120–131. https://doi.org/10.1016/j.amc.2017.10.055.
Xu, W., Collingsworth, P., Bailey, B., Carlson Mazur, M., Schaeffer, J. & Minsker, B. (2017). Detecting spatial patterns of rivermouth processes using a geostatistical framework for near-real-time analysis. Environmental Modelling & Software, 97, 72–85. https://doi.org/10.1016/j.envsoft.2017.06.049.
Yang, C.S., Kao, S.P., Lee, F.B. & Hung, P.S. (2004). Twelve different interpolation methods: A case study of Surfer 8.0. In Proceedings of the XXth ISPRS Congress, 35, 778-785.
Yilmaz, H.M. (2007). The effect of interpolation methods in surface definition: an experimental study. Earth Surface Processes and Landforms, 32(9), 1346-1361.
Zimmerman, D., Pavlik, C., Ruggles, A. & Armstrong, M.P. (1999). An experimental comparison of ordinary and universal kriging and inverse distance weighting. Mathematical Geology, 31, 375–390.
Publicado
2018-04-30
Sección
Ciencias Químicas