Kalina Fonseca Largo et al.
66
Santa Fe, NM. National Center for Geographic Information and Analysis, Santa Barbara, Santa Barbara,
CA.
Chávez, L.S.A. & Moreano, R. (2013). Sistema de Información para la Interpolación de Datos de Temperatura
y Precipitación del Ecuador. Revista Politécnica, 32.
Chen, S., Cowan, C. F. & Grant, P. M. (1991). Orthogonal least squares learning algorithm for radial basis
function networks. IEEE Transactionson neural networks, 2(2), 302-309.
Dirks, K.N., Hay, J.E., Stow, C.D. & Harris, D. (1998). High-resolution studies of rainfall on Norfolk Island Part
II: interpolation ofrain fall data. Journal of Hydrology, 208, 187–193.
Fallas, J. (2007). Modelos digitales de elevación: Teoría, métodos de interpolación y aplicaciones. Mapealo.
Com, San José, Costa Rica, 83.
https://www.researchgate.net/profile/Jorge_Fallas5/publication/229021279_Modelos_digitales_de_eleva
cion_Teoria_metodos_de_interpolacion_y_aplicaciones/links/55a529ef08ae00cf99c94ee6/Modelos-
digitales-de-elevacion-Teoria-metodos-de-interpolacion-y-aplicaciones.pdf.
Hengl, T. (2007). A Practical Guide to Geostatistical Mapping of Environmental Variables. JRC Scientific and
Technichal Reports. Office for Official Publication of the European Communities, Luxembourg.
Hernandez-Stefanoni, J.L. & Ponce-Hernandez, R. (2006). Mapping the spatial variability of plant diversity in
a tropical forest: comparison of spatial interpolation methods. Environmental Monitoring and Assessment
117, 307–334.
llbay Yupa, M., Largo, K. F., Miguitama, A. Q., Landázuri, R. L. & Toasa, J.T. (2017). Estimación de datos
faltantes de precipitación en la Subcuenca del río Patate. Revista Bases de la Ciencia, 2 (3), 37-49.
Isaaks, E.H. & Srivastava, R.M. (1989). Applied Geostatistics. Oxford University Press, New York, p. 561.
Laslett, G.M. (1994). Kriging and splines: an empirical comparison of their predictive performance in some
applications. Journal of the American Statistical Association, 89, 391–400.
Li, J. & Heap, A. D. (2008). A review of spatial interpolation methods for environmental scientists. Geosciences
Australia, Record 2008/23.
Li, J. & Heap, A.D. (2011). A review of comparative studies of spatial interpolation methods in environmental
sciences: Performance and impact factors. Ecological Informatics, 6(3), 228-241.
https://doi.org/10.1016/j.ecoinf.2010.12.003.
Nalder, I.A. & Wein, R.W. (1998). Spatial interpolation of climatic normals: test of a new method in the
Canadian boreal forest. Agricultural and Forest Meteorology, 92, 211–225.
Osorio, D.S.Á., Contreras, A.C. & León, J.C.M. (2011). Modelos digitales batiMétricos generados por Métodos
de interpolación idw, kriging, shepard y b-spline en el archipiélago de islas del rosario. UD y la geomática,
5, 3–14.
Schloeder, C.A., Zimmerman, N.E. & Jacobs, M.J. (2001). Comparison of methods for interpolating soil
properties using limited data. Soil Science Society of American Journal, 65, 470–479.
Shtiliyanova, A., Bellocchi, G., Borras, D., Eza, U., Martin, R. & Carrère, P. (2017). Kriging-based approach to
predict missing air temperature data. Computers and Electronics in Agriculture, 142, 440–449.
https://doi.org/10.1016/j.compag.2017.09.033.
Stahl, K., Moore, R.D., Floyer, J.A., Asplin, M.G. & McKendry, I.G. (2006). Comparison of approaches for
spatial interpolation of daily air temperature in a large region with complex topography and highly variable
station density. Agricultural and Forest Meteorology, 139, 224–236.
Theil, H. (1992). A rank-invariant method of linear and polynomial regression analysis. In Henri Theil’s
Contributions to Economics and Econometrics. Springer Netherlands.
Thompson, W.R. & Weil, C.S. (1952). On the construction of tables for moving-average interpolation.
Biometrics, 8(1), 51-54.