
6. REFERENCIAS
Apprato, D., Arcangéli, R., y Manzanilla, R. (1987). Sur la construction de surfaces de classe c
k
á partir
d’un grand nombre de données de lagrange. Modélisation mathématique et analyse numérique.,
21,(4), 529–555.
Apprato, D., y Gout, C. (2000). A result about scale transformation families in approximation: appli-
cation to surface fitting from rapidly varying data. Numerical Algorithms., 23, 263–279.
Arcangéli., R. (1989). Some application of discrete d
m
-spline mathematical methods in computer
aided geometric design. in: Lyche, t. and schumaker, l.(eds.). Academic Press, INC., 35–44.
Arcangéli, R., Manzanilla, R., y Torrens, J. (1997). Approximation spline de surfaces de type ex-
plicite comportant des failles. Modélisation mathématique et analyse numérique, 31(5), 643–676.
Descargado de http://www.numdam.org/item/?id=M2AN_1997__31_5_643_0
Gibbs, J. W. (1898). Fourier’s series. Letter in Nature, 59, 606. doi: 10.1038/059200b0
Gout, C., Guyader, C. L., Romani, L., y Saint-Guirons, A. (2008, marzo). Approximation of surfaces
with fault(s) and/or rapidly varying data, using a segmentation process, D
m
splines and the finite
element method. Numerical Algorithms, 48(1-3), 67–92. doi: 10.1007/s11075-008-9177-8
Gout, C., y Ramière., I. (2003). Surface approximation from rapidly varying bathymetric data. IEEE
IGARSS., 4(IV), 2679–2681.
Gutzmer, T., y Iske, A. (1997). Detection of discontinuities in scattered data approximation. Numerical
Algorithms, 16,(2), 150–170. doi: 10.1023/A:1019139130423
Jerri, A. J. (1998, 01). The gibbs phenomenon in fourier analysis, splines and wavelet approximations.
Mathematics and Its Applications. Springer∙Science+Business Media, B.V..
Manzanilla, R. (1986). Sur l’approximation de surfaces définies par une équation explicite. Thèse,
Université de Pau.
Palma, P., Gallo, R., y Manzanilla, R. (2021, September). Detection of Discontinuity Points in one
Variable Functions using Space of Trigonometric Functions . Compama. Bull. Comput. Appl. Math,
9(2).
Rivera-Roman, E., y Martinez-Gonzalez, R. (2018). Características del fenómeno de gibbs. Impulso
tecnológico, 15(37°), 14–16.
Rodríguez del Río, R., y Zuazua Iriondo, E. (2003). Series de fourier y fenómeno de gibbs. Cubo.
Matemática Educacional, 5(2), 185–224.
Publicación Cuatrimestral. Vol. 7, No. Especial, Diciembre, 2022, Ecuador (p. 135 -152) 151