Binnie Luzardo Gorozabel, Enrique Ruíz Reyes, Jean Carlos Pérez Parra
20
Ge, X., Chang, C., Zhang, L., Cui, S., Luo, X., Hu, S., Qin, Y., & Li, Y. (2018). Conversion of Lignocellulosic Biomass Into
Platform Chemicals for Biobased Polyurethane Application. In Advances in Bioenergy (1st ed., Vol. 3). Elsevier Inc.
https://doi.org/10.1016/bs.aibe.2018.03.002
Gill, M. K., Kocher, G. S., & Panesar, A. S. (2021). Optimization of acid-mediated delignification of corn stover, an
agriculture residue carbohydrate polymer for improved ethanol production. Carbohydrate Polymer Technologies and
Applications, 2(August 2020), 100029. https://doi.org/10.1016/j.carpta.2020.100029
Gómez, J. M. (2016). Analysis of the variation in the efficiency in the production of biofuels in Latin America. Estudios
Gerenciales, 32(139), 120–126. https://doi.org/10.1016/j.estger.2016.01.001
Groves, C., Sankar, M., & Thomas, P. J. (2018). Second-generation biofuels: exploring imaginaries via deliberative workshops
with farmers. Journal of Responsible Innovation, 5(2), 149–169. https://doi.org/10.1080/23299460.2017.1422926
Guerrero, A. B., & Muñoz, E. (2018). Life cycle assessment of second generation ethanol derived from banana agricultural
waste: Environmental impacts and energy balance. Journal of Cleaner Production, 174, 710–717.
https://doi.org/10.1016/j.jclepro.2017.10.298
Gundupalli, M. P., Anne Sahithi, S. T., Jayex, E. P., Asavasanti, S., Yasurin, P., Cheng, Y. S., & Sriariyanun, M. (2022).
Combined effect of hot water and deep eutectic solvent (DES) pretreatment on a lignocellulosic biomass mixture for
improved saccharification efficiency. Bioresource Technology Reports, 17(February), 100986.
https://doi.org/10.1016/j.biteb.2022.100986
Haghighi Mood, S., Hossein Golfeshan, A., Tabatabaei, M., Salehi Jouzani, G., Najafi, G. H., Gholami, M., & Ardjmand, M.
(2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and
Sustainable Energy Reviews, 27, 77–93. https://doi.org/10.1016/j.rser.2013.06.033
Haldar, D., & Purkait, M. K. (2021). A review on the environment-friendly emerging techniques for pretreatment of
lignocellulosic biomass: Mechanistic insight and advancements. Chemosphere, 264, 128523.
https://doi.org/10.1016/j.chemosphere.2020.128523
Hilbert, J. A., & Caratori, L. (2021). El potencial de los biocombustibles argentinos para contribuir al cumplimiento de las
contribuciones de Argentina en el marco del Acuerdo de París. Ministerio de Agricultura, Ganadería y Pesca.
Presidencia de La Nación, July.
Hoang, A. T., Nižetić, S., Ong, H. C., Mofijur, M., Ahmed, S. F., Ashok, B., Bui, V. T. V., & Chau, M. Q. (2021). Insight
into the recent advances of microwave pretreatment technologies for the conversion of lignocellulosic biomass into
sustainable biofuel. Chemosphere, 281(May). https://doi.org/10.1016/j.chemosphere.2021.130878
Huang, C., Lin, W., Lai, C., Li, X., Jin, Y., & Yong, Q. (2019). Coupling the post-extraction process to remove residual lignin
and alter the recalcitrant structures for improving the enzymatic digestibility of acid-pretreated bamboo residues.
Bioresource Technology, 285(March), 121355. https://doi.org/10.1016/j.biortech.2019.121355
Islam, M. K., Wang, H., Rehman, S., Dong, C., Hsu, H. Y., Lin, C. S. K., & Leu, S. Y. (2020). Sustainability metrics of
pretreatment processes in a waste derived lignocellulosic biomass biorefinery. Bioresource Technology, 298, 122558.
https://doi.org/10.1016/j.biortech.2019.122558
Jin, K., Liu, X., Jiang, Z., Tian, G., Yang, S., Shang, L., & Ma, J. (2019). Delignification kinetics and selectivity in poplar
cell wall with acidified sodium chlorite. Industrial Crops and Products, 136(January), 87–92.
https://doi.org/10.1016/j.indcrop.2019.04.067
Karimi, K. (2015). Lignocellulose-Based Bioproducts (Vol. 1). https://doi.org/10.1007/978-3-319-14033-9
Karimi, K., & Taherzadeh, M. J. (2016). A critical review on analysis in pretreatment of lignocelluloses: Degree of
polymerization, adsorption/desorption, and accessibility. Bioresource Technology, 203, 348–356.
https://doi.org/10.1016/j.biortech.2015.12.035
Khan, M. U., Usman, M., Ashraf, M. A., Dutta, N., Luo, G., & Zhang, S. (2022). A review of recent advancements in
pretreatment techniques of lignocellulosic materials for biogas production: Opportunities and Limitations. Chemical
Engineering Journal Advances, 10(November 2021), 100263. https://doi.org/10.1016/j.ceja.2022.100263
Khuenkaeo, N., & Tippayawong, N. (2020). Production and characterization of bio-oil and biochar from ablative pyrolysis of
lignocellulosic biomass residues. Chemical Engineering Communications, 207(2), 153–160.
https://doi.org/10.1080/00986445.2019.1574769
Kikas, T., Tutt, M., Raud, M., Alaru, M., Lauk, R., & Olt, J. (2016). Basis of energy crop selection for biofuel production:
Cellulose vs. lignin. International Journal of Green Energy, 13(1), 49–54.
https://doi.org/10.1080/15435075.2014.909359
Kumar, A., & Chandra, R. (2020). Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in
environment. Heliyon, 6(2), e03170. https://doi.org/10.1016/j.heliyon.2020.e03170
Kumar, P. V., & Sulaiman, Z. (2016). Use of synthetic fusion gene to produce biodiesel from lignocellulosic biomass.
Biofuels, 7(2), 191–200. https://doi.org/10.1080/17597269.2015.1123984
Kumari, D., & Singh, R. (2018). Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renewable
and Sustainable Energy Reviews, 90(May 2017), 877–891. https://doi.org/10.1016/j.rser.2018.03.111
Li, X., Shi, Y., Kong, W., Wei, J., Song, W., & Wang, S. (2022). Improving enzymatic hydrolysis of lignocellulosic biomass
by bio-coordinated physicochemical pretreatment—A review. Energy Reports, 8, 696–709.
https://doi.org/10.1016/j.egyr.2021.12.015
Magalhães, A. I., de Carvalho, J. C., de Melo Pereira, G. V., Karp, S. G., Câmara, M. C., Medina, J. D. C., & Soccol, C. R.
(2019). Lignocellulosic biomass from agro-industrial residues in South America: current developments and
perspectives. Biofuels, Bioproducts and Biorefining, 13(6), 1505–1519. https://doi.org/10.1002/bbb.2048