
Hugo Córdova Morán, Raúl Manzanilla, Rodolfo Gallo
• La metodología es fácilmente extensible para localizar todos los puntos de discontinuidad en un
intervalo de trabajo haciendo uso del paralelismo intrínseco del modelo desarrollado. (Teorema
1).
6. DECLARACIÓN DE CONFLICTO DE INTERESES DE LOS AUTORES
Los autores declaran no tener conflicto de intereses.
7. REFERENCIAS
Allasia, G., Besenghi, R., y Cavoretto, R. (2009, 01). Accurate approximation of unknown fault lines
from scattered data. MEMORIE DELLA ACCADEMIA DELLE SCIENZE DI TORINO. CLASSE
DI SCIENZE FISICHE MATEMATICHE E NATURALI, 33, 3-26.
Apprato, D., Arcangéli, R., y Manzanilla, R. (1987). Sur la construction de surfaces de classe c
k
á partir
d’un grand nombre de données de lagrange. Modélisation mathématique et analyse numérique.,
21,(4), 529–555.
Apprato, D., y Gout, C. (2000). A result about scale transformation families in approximation: appli-
cation to surface fitting from rapidly varying data. Numerical Algorithms., 23, 263–279.
Arcangéli., R. (1989). Some application of discrete d
m
-spline mathematical methods in computer
aided geometric design. in: Lyche, t. and schumaker, l.(eds.). Academic Press, INC., 35–44.
Arcangéli, R., Manzanilla, R., y Torrens, J. (1997). Approximation spline de surfaces de type ex-
plicite comportant des failles. Modélisation mathématique et analyse numérique, 31(5), 643–676.
Descargado de http://www.numdam.org/item/?id=M2AN_1997__31_5_643_0
Gibbs, J. W. (1898). Fourier’s series. Letter in Nature, 59, 606. doi: 10.1038/059200b0
González, C. J. C. (2003). Fundamentos del análisis de fourier. GAMESAL.
Gout, C., Guyader, C. L., Romani, L., y Saint-Guirons, A. (2008, marzo). Approximation of surfaces
with fault(s) and/or rapidly varying data, using a segmentation process, D
m
splines and the finite
element method. Numerical Algorithms, 48(1-3), 67–92. doi: 10.1007/s11075-008-9177-8
Gout, C., y Ramière, I. (2003). Surface approximation from rapidly varying bathymetric data. IEEE
IGARSS., 4(IV), 2679–2681.
Gutzmer, T., y Iske, A. (1997). Detection of discontinuities in scattered data approximation. Numerical
Algorithms, 16,(2), 150–170. doi: 10.1023/A:1019139130423
Jerri, A. J. (1998, 01). The gibbs phenomenon in fourier analysis, splines and wavelet approximations.
Mathematics and Its Applications. Springer∙Science+Business Media, B.V..
Kouibia, A., y Pasadas, M. (2004). Approximation of discontinuous curves and surfaces by discrete
splines with tangent conditions. Electronic Journal of Differential Equations (EJDE) [electronic
only], 2004, 157–166. Descargado de :http://ejde.math.txstate.eduorhttp://ejde.math
.unt.eduftpejde.math.txstate.edu(login:ftp)
182 ISNN 2588-0764 REVISTA BASES
DE LA CIENCIA