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RESUMEN 

Sea 𝑋 un conjunto no vacío y 𝑓: 𝑋 → 𝑋 una función. La colección 𝜏𝑓 ≔ {𝐴 ⊂ 𝑋: 𝑓−1(𝐴) ⊂ 𝐴} es llamada topología 

primal inducida por 𝑓 sobre 𝑋. Con esta topología, el espacio 𝑋 es un espacio Alexandroff, es decir, la intersección de 

una familia arbitraria de abiertos es un conjunto abierto. Una topología 𝜏 provista de dos operaciones biarias definidas a 

través de la unión e intersección de conjuntos puede ser vista como un semianillo. El objetivo de este trabajo es mostrar 

algunas de las propiedades generales de las topologías primales, en particular, las características de las topologías primales 

vistas como semianillos. Entre otros resultados, proveemos algunos de los ideales primos y maximales que se pueden 

contruir para una topología primal arbitraria. Finalmente, proveemos algunos resultados relacionados a las topologías 

primales inducidas por un homomorfismo de grupos sobre un grupo 𝐺.  

 

Palabras clave: Espacio primal, semianillo, homomorfismo de grupo. 

 

AN EXPLORATORY STUDY ON PRIMAL TOPOLOGIES 

ABSTRACT 

Let 𝑋 be a non-empty set and 𝑓: 𝑋 → 𝑋 a function. The collection 𝜏𝑓 ≔ {𝐴 ⊂ 𝑋: 𝑓−1(𝐴) ⊂ 𝐴} is called primal topology 

induced by 𝑓 on 𝑋. With this topology, the space 𝑋 is an Alexandroff space, that is, the intersection of an arbitrary family 

of open sets is an open set. A topology 𝜏 equipped with two binary operations defined through the union and intersection 

of sets can be seen as a semiring. The aim of this paper is to show some of the general properties of primal topologies, in 

particular, the characteristics of primal topologies seen as semirings. Among other results, we provide some of the prime 

and maximal ideals that can be constructed for an arbitrary primal topology. We finally provide some results related to 

the primal topology induced by a group homomorphism on a group 𝐺. 

Keywords: Primal space, semiring, group homomorphism. 
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UM ESTUDO EXPLORATÓRIO SOBRE TOPOLOGIAS PRIMAIS 

RESUMO 

Seja 𝑋 um conjunto não vazio e 𝑓: 𝑋 → 𝑋 uma função. A coleção 𝜏𝑓 ≔ {𝐴 ⊂ 𝑋: 𝑓−1(𝐴) ⊂ 𝐴} é chamada de topologia 

primal induzida por 𝑓 em 𝑋. Com esta topologia, o espaço 𝑋 é um espaço de Alexandroff, ou seja, a interseção de uma 

família arbitrária de conjuntos abertos é um conjunto aberto. Uma topologia 𝜏 provida de duas operações binárias 

definidas por união e interseção de conjuntos pode ser vista como um semi-anel. O objetivo deste artigo é mostrar algumas 

das propriedades gerais das topologias primais, em particular, as características das topologias primais vistas como semi-

anéis. Entre outros resultados, fornecemos alguns dos ideais primos e máximos que podem ser construídos para uma 

topologia primal arbitrária. Finalmente, fornecemos alguns resultados relacionados à topologia primal induzida por um 

homomorfismo de grupo em um grupo 𝐺. 

Palavras chave: espaço primal, semi-anel, homomorfismo de grupo 
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1. INTRODUCTION 

 
Alexandroff (1937) introduced the notion of topological spaces in which the arbitrary union of closed 

sets is a closed set, which he named Diskrete Raume or Discrete Spaces. This property is clearly 

equivalent to the fact that the arbitrary intersection of open sets is an open set. A trivial example of 

these spaces, on which mathematicians such as McCord (1966), Stong (1966) and Herman (1990) 

worked on, correspond to finite topological spaces. However, given that the term discrete space was 

already being used to describe those on which every subset is open, McCord, for instance, decided to 

rename them as A-spaces, and focused his study on 𝑇0 A-spaces. Herman (1990) on the other hand, 

named these spaces Sparse, but mathematicians would eventually opt for the name Alexandroff 

spaces in honor of Pavel Alexandroff, whom initially drew the attention to this topic. 

Shirazi and Golestani (2011) would later present a study on a proper subclass of Alexandroff spaces, 

which they called Functional Alexandroff Spaces, given that the topology considered was induced by 

a function, and the resultant space was indeed Alexandroff. Finally, Echi (2012) presented some 

results about these spaces and named them Primal spaces, term that has been used since. In this paper, 

we equip a primal topology 𝜏𝑓 with two operations defined through the union and intersections of 

sets, which make 𝜏𝑓 a semiring. We present some of the properties of these topologies seen as 

semirings, more specifically, we show some of the prime and maximal ideals that can be constructed 

for a primal topology 𝜏𝑓. We also study the generalization of some results previously presented by 

the authors of this paper. In particular, we show the generalization of primal spaces induced on a 

finite dimension vector space by the use of group homomorphisms.  

 

2. PRELIMINARIES 

In this section we present some of the fundamental concepts about primal topologies. 

Definition 2.1. Given a non-empty set 𝑋 and a function 𝑓: 𝑋 → 𝑋, then the collection 𝜏𝑓 ≔

{𝐴 ⊂ 𝑋: 𝑓−1(𝐴) ⊂ 𝐴} is called primal topology induced on 𝑋, and the space (𝑋, 𝜏𝑓) is called primal 

space. 

Equivalently, a primal topology 𝜏𝑓 on a set 𝑋 can be defined by deciding the closed sets to be those 

subsets 𝐵 ⊂ 𝑋 that are 𝑓- invariant, that is, 𝑓(𝐵) ⊂ 𝐵. In order to see this equivalence, let 𝐴 be an 

open set of a primal space (𝑋, 𝜏𝑓), then by definition 𝑋 ∖ 𝐴 is closed. If we assume that the image of 

𝑋 ∖ 𝐴 under 𝑓 is not contained in 𝑋 ∖ 𝐴, then there exists an element 𝑥 ∈ 𝐴 such that 𝑓−1(𝑥) ∈ 𝑋 ∖
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𝐴, a contradiction. Some of the well-known properties of the function associated to a primal space 

are given below. 

Lemma 2.1. The function 𝑓 associated to the primal space (𝑋, 𝜏𝑓) is continuous.  

Proof: Let 𝐴 be an open set of 𝑋. In order for 𝑓−1(𝐴) to be open, it must hold 𝑓−1(𝑓−1(𝐴)) ⊂

𝑓−1(𝐴). Let 𝑥 ∈ 𝑓−1(𝐴). Since A is open, we have 𝑓−1(𝐴) ⊂ 𝐴, which implies 𝑥 ∈ 𝐴. By the same 

hypothesis we then have 𝑓−1(𝑥) ∈ 𝑓−1(𝐴).  

The following two Lemmas are provided by Shirazi and Golestani (2011), for which we provide the 

proofs. 

Lemma 2.2. Let (𝑋, 𝜏𝑓) be a primal space. Then 𝑓: 𝑋 → 𝑋 is a homeomorphism if and only if it is a 

bijection. 

Proof: If 𝑓 is a homeomorphism, it is trivial that 𝑓 is a bijection. For the converse statement, by 

Lemma 2.1 we have that 𝑓 is continuous. In order for 𝑓−1 to be continuous, it must hold 𝑓−1(𝑓(𝐴)) ⊂

𝑓(𝐴), for 𝐴 ∈ 𝜏𝑓. Given that 𝑓 in injective, then 𝑓−1(𝑓(𝐴)) = 𝐴, which implies that 𝐴 ⊂ 𝑓(𝐴) must 

hold. This is true given that 𝑓(𝐴) = 𝑓(𝑓−1(𝐴) ∪ [𝐴 ∖ 𝑓−1(𝐴)]) = 𝑓(𝑓−1(𝐴)) ∪ 𝑓([𝐴 ∖ 𝑓−1(𝐴)]) =

𝐴 ∪ 𝑓([𝐴 ∖ 𝑓−1(𝐴)]) ⊃ 𝐴.  

Lemma 2.3. Let (𝑋, 𝜏𝑓) be a primal space. Then 𝑓: 𝑋 → 𝑋 is a homeomorphism if and only if it is 

injective and open. 

Proof: If 𝑓 is a homeomorphism, it is trivial that it is an injective and open function. For the converse 

statement, by Lemma 2.1 we have that 𝑓 is continuous. For 𝑓−1 to be continuous, it must hold that 

𝑓(𝐴) ∈ 𝜏𝑓, for 𝐴 ∈ 𝜏𝑓, which is true given that 𝑓 is open.  

We shall now prove that primal topologies are indeed Alexandroff topologies. In order to do that, we 

first define Alexandroff spaces and provide one of its characterizations. 

Definition 2.2. Let 𝑋 be a topological space, then 𝑋 is an Alexandroff space if the arbitrary 

intersection of open sets is an open set.  

The following theorem, which characterizes Alexandroff spaces, is given by Speer (2007). 

Theorem 2.1. 𝑋 is an Alexandroff space if and only if every point 𝑥 ∈ 𝑋 has a minimal open 

neighborhood.  
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We resort to this result in order to prove that every primal space is Alexandroff. For this reason, we 

define a set for every point in a primal space which will be proven to be the minimal open 

neighborhood of the point. 

Definition 2.3. Let (𝑋, 𝜏𝑓) be a primal space and 𝑥, 𝑦 ∈ 𝑋. A preorder ≤𝑓 can be defined on 𝑋 as 

follows: 𝑥 ≤𝑓 𝑦 if and only if there exists an integer 𝑛 ≥ 0 such that 𝑓𝑛(𝑥) = 𝑦. 

Definition 2.4. Let (𝑋, 𝜏𝑓) be a primal space. Then the sets:  

𝑐𝑙(𝑥) = {𝑦 ∈ 𝑋: 𝑥 ≤𝑓 𝑦}    𝑎𝑛𝑑    𝑘𝑒𝑟(𝑥) = {𝑦 ∈ 𝑋: 𝑦 ≤𝑓 𝑥} 

are called the closure and kernel of 𝑥 respectively. 

Proposition 2.1. Let (𝑋, 𝜏𝑓) be a primal space and 𝑥 ∈ 𝑋, then 𝑘𝑒𝑟 (𝑥) is the minimal open set 

containing 𝑥. 

Proof: We assume there exists an open set 𝐴 ∈ 𝜏𝑓 such that 𝑥 ∈ 𝐴 ⊊ ker (𝑥). Then there exists an 

element 𝑦 ∈ (ker(𝑥) ∖ 𝐴). Moreover, there exists an integer 𝑘 ≥ 0 such that 𝑓𝑘(𝑦) ∉ 𝐴 and 

𝑓𝑘+1(𝑦) ∈ 𝐴, which implies 𝑓−1(𝐴) ⊄ 𝐴, a contradiction.  

Corollary 2.1. Every primal space is an Alexandroff space. 

Proof: It is an immediate result from Theorem 2.1 and Proposition 2.1.  

We now show some of the fundamental properties of the sets defined above.  

Lemma 2.4. Let 𝑥, 𝑦 be two distinct elements of a primal space (𝑋, 𝜏𝑓). Then 𝑘𝑒𝑟(𝑥) ⊂ 𝑘𝑒𝑟 (𝑦) or 

𝑘𝑒𝑟(𝑦) ⊂ 𝑘𝑒𝑟 (𝑥) or 𝑘𝑒𝑟(𝑥) ∩ 𝑘𝑒𝑟(𝑦) = ∅. 

Proof: We assume ker(𝑥) ∩ ker(𝑦) ≠ ∅. Then there exists an element 𝑧 ∈ 𝑋 and integers 𝑛, 𝑚 ≥ 0 

such that 𝑓𝑛(𝑧) = 𝑥 and 𝑓𝑚(𝑧) = 𝑦. Given that 𝑥 ≠ 𝑦 we have that 𝑛 ≠ 𝑚. If we assume 𝑚 > 𝑛 

then 𝑥 ∈ ker (𝑦) and ker(𝑥) ⊂ ker (𝑦). If we assume 𝑛 > 𝑚 then 𝑦 ∈ ker(𝑥) and ker(𝑦) ⊂ ker(𝑥). 

Lemma 2.5. Let (𝑋, 𝜏𝑓) be a primal space. Then for all 𝑥 ∈ 𝑋 we have 𝑐𝑙(𝑥) is the minimal closed 

set containing 𝑥. 

Proof: We assume there exists a closed set 𝐴 of 𝑋 such that 𝑥 ∈ 𝐴 ⊊ 𝑐𝑙(𝑥). Then there exists an 

element 𝑦 ∈ (𝑐𝑙(𝑥) ∖ 𝐴) and an integer 𝑘 ≥ 0 such that 𝑓𝑘(𝑥) ∈ 𝐴 and 𝑓𝑘+1(𝑥) = 𝑦, which implies 

𝑓(𝐴) ⊄ 𝐴, a contradiction.  
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Therefore, any closed set 𝐴 of 𝑋 can be expressed as a union of the closure of each element of 𝐴. 

More precisely, if 𝐴 is a closed set of 𝑋 then 𝐴 = ⋃ 𝑐𝑙(𝑥)𝑥∈𝐴 . Observe that given that every primal 

space is Alexandroff (equivalent to the fact that the arbitrary union of closed sets is a closed set), we 

have that ⋃ 𝑐𝑙(𝑥)𝑥∈𝐴  is indeed a closed set. 

Lemma 2.6. Let (𝑋, 𝜏𝑓) be a primal space and 𝐴 an open subset of 𝑋, then 𝐴 is a primal space 

equipped with the subspace topology:  

𝜏𝐴 ≔ {𝐴 ∩ 𝑈: 𝑈 ∈ 𝜏𝑓} 

Proof: Let 𝐵 be an element of 𝜏𝐴, then 𝐵 = 𝐴 ∩ 𝑈 for some 𝑈 ∈ 𝜏𝑓. Also 𝑓−1(𝐵) = 𝑓−1(𝐴 ∩ 𝑈) =

𝑓−1(𝐴) ∩ 𝑓−1(𝑈) and given that 𝐴 and 𝑈 are open set of 𝑋 it follows 𝑓−1(𝐴) ∩ 𝑓−1(𝑈) ⊂ (𝐴 ∩ 𝑈) =

𝐵. Therefore 𝑓−1(𝐵) ⊂ 𝐵 and 𝜏𝐴 is a primal topology. 

In regards of the connected components of a primal space, Shirazi and Golestani (2011) show the 

following result. 

Lemma 2.7. Let (𝑋, 𝜏𝑓) be a primal space, then any two elements 𝑝, 𝑞 ∈ 𝑋 are in the same connected 

component if and only if there exist 𝑛, 𝑚 ∈ ℕ such that 𝑓𝑛(𝑝) = 𝑓𝑚(𝑞). 

Given this Lemma, it is possible to define an equivalence relation ~𝑓 for (𝑋, 𝜏𝑓) as follows: for any 

two elements 𝑥, 𝑦 ∈ 𝑋, 𝑥~𝑓𝑦 if and only if there exist integers 𝑛, 𝑚 ≥ 0 such that 𝑓𝑛(𝑥) = 𝑓𝑚(𝑦). 

Proposition 2.2. The relation ~𝑓 is indeed an equivalence relation.  

Proof: Reflexivity and symmetry are trivial. To prove transitivity, let 𝑥~𝑓𝑦 and 𝑦~𝑓𝑧, then there 

exist integers 𝑛, 𝑚, 𝑗, 𝑘 ≥ 0 such that 𝑓𝑚(𝑥) = 𝑓𝑛(𝑦) and 𝑓𝑗(𝑦) = 𝑓𝑘(𝑧). Therefore 𝑓𝑚+𝑗(𝑥) =

𝑓𝑗(𝑓𝑚(𝑥)) = 𝑓𝑗(𝑓𝑛(𝑦)) = 𝑓𝑛 (𝑓𝑗(𝑦)) = 𝑓𝑛(𝑓𝑘(𝑧)) = 𝑓𝑛+𝑘(𝑧), and 𝑥~𝑓𝑧.  

Naturally, it is possible to define the equivalence class of each element 𝑥 ∈ 𝑋 as the set  𝑥 ≔

{𝑦 ∈ 𝑋: 𝑥~𝑓𝑦} and the quotient space as the set 
𝑋

~𝑓
≔ {𝑥: 𝑥 ∈ 𝑋} 

 

3. GENERAL RESULTS ABOUT PRIMAL SPACES 

In this section we present some general results about primal spaces. In particular, we focus on some 

of the characteristics of connected components in primal spaces. 

Lemma 3.1. Let (𝑋, 𝜏𝑓) be a primal space and 𝑦 ∈ 𝑥, then 𝑐𝑙(𝑦) ⊂ 𝑥. 
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Proof: Let 𝑧 ∈ 𝑐𝑙(𝑦), then there exists an integer 𝑛 ≥ 0 such that 𝑓𝑛(𝑦) = 𝑧. Given that 𝑦 ∈ 𝑥 then 

there exist integers 𝑚, 𝑙 ≥ 0 such that 𝑓𝑚(𝑥) = 𝑓𝑙(𝑦). Applying the result from Proposition 2.2 we 

have 𝑓𝑚+𝑛(𝑥) = 𝑓𝑙(𝑧) which implies 𝑥~𝑓𝑧 and 𝑧 ∈ 𝑥. 

Given this result, it is possible to show that every connected component of a primal space is closed. 

This result is also shown by Garcia-Mendoza et al (2021), however we provide a different approach 

to prove such property. 

Lemma 3.2. Let (𝑋, 𝜏𝑓) be a primal space, then 𝑥 = ⋃ 𝑐𝑙(𝑦)𝑦∈𝑥 . 

Proof: Let 𝑦 ∈ 𝑥, since 𝑦 ∈ 𝑐𝑙(𝑦) and 𝑐𝑙(𝑦) ⊂ ⋃ 𝑐𝑙(𝑦)𝑦∈𝑥  we have 𝑥 ⊂ ⋃ 𝑐𝑙(𝑦)𝑦∈𝑥 . On the other 

hand, let 𝑦 ∈ ⋃ 𝑐𝑙(𝑦)𝑦∈𝑥 , then there exists 𝑧 ∈ 𝑥 such that 𝑦 ∈ 𝑐𝑙(𝑧) and by Lemma 3.1 we have 

𝑐𝑙(𝑧) ⊂ 𝑥, which implies ⋃ 𝑐𝑙(𝑦)𝑦∈𝑥 ⊂ 𝑥.  

Note that every connected component is clopen, since the equivalence classes form a partition of the 

space 𝑋, and the complement of each connected component is the union of closed connected 

components. The following result is shown by Guale et al (2020). 

Lemma 3.3. Let (𝑋, 𝜏𝑓) be a connected primal space and let 𝐴, 𝐵 ∈ 𝜏𝑓 . If 𝐴 ∪ 𝐵 = 𝑋, then 𝐴 = 𝑋 or 

𝐵 = 𝑋. 

We propose the following generalization of the previous Lemma as follows. 

Lemma 3.4. Let (𝑋, 𝜏𝑓) be a connected primal space such that 𝑐𝑙(𝑥) is finite for every 𝑥 ∈ 𝑋. Let 

{𝐴𝛼: 𝛼 ∈ 𝐽} be a collection of open sets of 𝑋 such that ⋃ 𝐴𝛼𝛼∈𝐽 = 𝑋. Then there exists 𝐴0 ∈

{𝐴𝛼: 𝛼 ∈ 𝐽} such that 𝐴0 = 𝑋. 

Proof: If 𝑋 is a connected primal space and 𝑐𝑙(𝑥) is finite for all 𝑥 ∈ 𝑋 then there exists 𝑝 ∈ 𝑋 such 

that 𝑝 is a periodic point. It must hold that 𝑝 ∈ 𝐴0 for some 𝐴0 ∈ {𝐴𝛼: 𝛼 ∈ 𝐽}. It also holds that 𝑝 ∈

ker(𝑝) = 𝑋, which implies 𝐴0 = 𝑋. 

Observe that this result cannot be extended for the case where 𝑐𝑙(𝑥) is infinite for all 𝑥 is a connected 

primal space. In order to see this, it is necessary to introduce the following equivalence. 

Lemma 3.5. Let (𝑋, 𝜏𝑓) be a connected primal space, then the following are equivalent:  

a. If 𝑋 = ⋃ 𝐴𝛼𝛼∈𝐽  for open sets 𝐴𝛼 of 𝑋, then there exists 𝑗 ∈ 𝐽 such that 𝐴𝑗 = 𝑋 

b. There exists 𝑥 ∈ 𝑋 such that 𝑘𝑒𝑟(𝑥) = 𝑋 
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Proof: a → b: Consider the following union ⋃ ker (𝑥)𝑥∈𝑋  which is clearly equal to 𝑋. From a. it 

follows that there exists 𝑥 ∈ 𝑋 such that ker(𝑥) = 𝑋. b → a: Consider a collection of open sets 𝐴𝛼 

with 𝛼 ∈ 𝐽 such that ⋃ 𝐴𝛼𝛼∈𝐽 = 𝑋. By b. it follows that there exists 𝑥 ∈ 𝑋 such that ker(𝑥) = 𝑋. By 

Proposition 2.1 we have that 𝑥 ∈ ker(𝑥) ⊂ 𝐴𝑗  for some 𝑗 ∈ 𝐽. 

Observe that this equivalence implies the existence of a periodic point 𝑥 ∈ 𝑋. To prove this, assume 

proposition b. from Lemma 3.5 as true. Let 𝑥 ∈ 𝑋 such that ker(x) = 𝑋, then 𝑓(𝑥) is also an element 

of 𝑋 and by b. it is also an element of ker (𝑥), which implies that there exists an integer 𝑛 ≥ 0 such 

that 𝑓𝑛(𝑓(𝑥)) = 𝑓𝑛+1(𝑥) = 𝑥, therefore 𝑥 is a periodic point. The existence of a periodic point 

impedes the existence of an infinite 𝑐𝑙(𝑦) for some 𝑦 in a connected primal space 𝑋. In order to 

illustrate this, consider the following trivial example. 

Example 3.1. Let ℕ be the set of natural numbers and 𝑓: ℕ → ℕ a function defined by 𝑓(𝑛) = 𝑛 + 1. 

Then (ℕ, 𝜏𝑓) is a connected primal space and 𝑐𝑙(𝑛) is infinite for all 𝑛 ∈ ℕ. 

If we assume there exists a collection of open sets {𝐴𝛼: 𝛼 ∈ 𝐽} such that ℕ = ⋃ 𝐴𝛼𝛼∈𝐽 , then by the 

equivalence shown in Lemma 3.5 it must hold that there exists 𝑛 ∈ ℕ such that ker(𝑛) =

{𝑥 ∈ ℕ: 𝑥 ≤ 𝑛} = ℕ, a contradiction.  

 

4. PRIMAL TOPOLOGIES SEEN AS SEMIRINGS 

In this section we study some of the properties of primal topologies seen as semirings. In particular, 

we show some of the prime ideals that can be constructed for an arbitrary primal topology. 

Definition 4.1. A semiring is a set 𝑋 equipped with two binary operations + and ⋅, called addition 

and multiplication respectively, such that:  

• (𝑋, +) is a commutative monoid with identity element 0 

• (𝑋,⋅) is a monoid with identity element 1 

• Multiplication distributes over addition 

• Multiplication by 0 annihilates 𝑋. 

Example 4.1. The set of all square matrices 𝑛 × 𝑛 with positive entries with the usual addition and 

multiplication between matrices is a semiring.  

Lemma 4.1. If (𝑋, 𝜏) is a topological space, then 𝜏 is a semiring with 𝐴 + 𝐵 ≔ 𝐴 ∪ 𝐵 and 𝐴 ⋅ 𝐵 ≔

𝐴 ∩ 𝐵 as the addition and multiplication operations.  
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Proof: The union and intersection of sets are clearly binary operations. Moreover, the identity element 

of the addition and multiplication operations are ∅ and 𝑋 respectively. The commutativity, 

associativity and distributity of these operations are obtained from the properties of union and 

intersection of sets. Finally, it is clear that multiplication by ∅ annihilates 𝜏.  

Given that the multiplication operation is defined through the intersection of sets, a commutative 

binary operation, we have that a topology 𝜏 is actually a commutative semiring, equipped with the 

operations above defined.  

Definition 4.2. A subset 𝐼 of a semiring (𝑆, +,⋅) is called an ideal of 𝑆, if the identity element of the 

addition operation is an element of 𝐼, and for every 𝑎, 𝑏 ∈ 𝐼 and 𝑠 ∈ 𝑆 it holds 𝑎 + 𝑏 ⋅ 𝑠 ∈ 𝐼. 

Definition 4.3. A semiring homomorphism from a semiring 𝑆 to a semiring 𝑅 is a function 𝑓: 𝑆 → 𝑅 

such that for all 𝑎, 𝑏 ∈ 𝑆 it holds:  

5. 𝑓(𝑎+𝑆𝑏) = 𝑓(𝑎)+𝑅𝑓(𝑏) 

5. 𝑓(𝑎 ⋅𝑆 𝑏) = 𝑓(𝑎) ⋅𝑅 𝑓(𝑏) 

5. 𝑓(1𝑆) = 1𝑅 

Lemma 4.2. Let 𝑓: 𝑆 → 𝑅 be a semiring homomorphism and let 𝐼 be an ideal of 𝑅, then 𝑓−1(𝐼) =

{𝑎 ∈ 𝑆: 𝑓(𝑎) ∈ 𝐼} is an ideal of S. 

Proof: It is easy to see that 0𝑆 ∈ 𝑓−1(𝐼). Let 𝑎, 𝑏 ∈ 𝑓−1(𝐼), then it holds 𝑓(𝑎), 𝑓(𝑏) ∈ 𝐼, and given 

that 𝐼 is an ideal, then 𝑓(𝑎) + 𝑓(𝑏) ∈ 𝐼. Given that 𝑓 is a semiring homomorphism, then 𝑓(𝑎 + 𝑏) =

𝑓(𝑎) + 𝑓(𝑏) ∈ 𝐼, which implies 𝑎 + 𝑏 ∈ 𝑓−1(𝐼). Using similar arguments it can be seen that 𝑠𝑎 ∈

𝑓−1(𝐼) and 𝑓−1(𝐼) is an ideal of 𝑆. 

Definition 4.4. A proper ideal 𝑃 of a semiring (𝑆, +,⋅) is called a prime ideal of 𝑆, if 𝑎𝑏 ∈ 𝑃 implies 

𝑎 ∈ 𝑃 or 𝑏 ∈ 𝑃. 

Definition 4.5. A proper ideal M of a semiring (𝐴, +,⋅) is called maximal ideal of 𝑆 if 𝑀 ⊆ 𝐼 ⊆ 𝑆, for 

an ideal 𝐼 of 𝑆, then 𝑀 = 𝐼 or 𝐼 = 𝑆. 

Note that for an ideal 𝐼 to be a proper ideal of a semiring 𝑆 it must hold that 𝐼 ⊊ 𝑆, which in turn 

requires 𝑋 ∉ 𝐼. 

Lemma 4.3. Let (𝑋, 𝜏) be a topological space, then 𝜎(𝑥) = {𝐴 ∈ 𝜏: 𝑥 ∉ 𝐴} is a prime ideal of 𝜏.  

Proof: It easy to see that ∅ ∈ 𝜎(𝑥). Let 𝐴, 𝐵 ∈ 𝜎(𝑥) and 𝑉 ∈ 𝜏. Given that 𝑥 ∉ 𝐴 and 𝑥 ∉ 𝐵 then 𝑥 ∉

(𝐴 ∪ 𝐵) which implies (𝐴 ∪ 𝐵) ∈ 𝜎(𝑥). It is trivial that (𝐴 ∩ 𝑉) ∈ 𝜎(𝑥). If 𝑃 ∩ 𝑄 ∈ 𝜎(𝑥) for 𝑃, 𝑄 ∈
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𝜏 then 𝑃 ∈ 𝜎(𝑥) or 𝑄 ∈ 𝜎(𝑥). Indeed, if we assume 𝑥 ∈ 𝑃 and 𝑥 ∈ 𝑄 then 𝑥 ∈ (𝑃 ∩ 𝑄) and 

(𝑃 ∩ 𝑄) ∉ 𝜎(𝑥), a contradiction. It must hold then that 𝑥 ∉ 𝑃 or 𝑥 ∉ 𝑄, that is 𝑃 ∈ 𝜎(𝑥) or 𝑄 ∈ 𝜎(𝑥). 

Theorem 4.1. If (𝑋, 𝜏) is a 𝑇1 topological space, then 𝜎(𝑥) = {𝐴 ∈ 𝜏: 𝑥 ∉ 𝐴} is a maximal ideal of 

𝜏. 

Proof: Given that 𝑋 is 𝑇1, then 𝑋 ∖ {𝑥} is open, moreover (𝑋 ∖ {𝑥}) ∈ 𝜎(𝑥). If we assume 𝜎(𝑥) is 

not a maximal ideal of 𝜏, then there exists an ideal 𝐼 of 𝜏 such that 𝜎(𝑥) ⊂ 𝐼 ⊆ 𝜏. Therefore, there 

exists an open set 𝐴 ∈ 𝐼 such that 𝑥 ∈ 𝐴. Then (𝑋 ∖ {𝑥}) ∪ 𝐴 = 𝑋 ∈ 𝐼, which implies 𝐼 = 𝜏. It follows 

that 𝜎(𝑥) is a maximal ideal of 𝜏. 

Theorem 4.2. Let (𝑋, 𝜏𝑓) be a primal space and 𝐶 a connected component of 𝑋. Then 𝜓(𝐶) ≔

{𝐴 ∈ 𝜏𝑓: 𝐶 ⊄ 𝐴} is a prime ideal of 𝜏𝑓. 

Proof: It is easy to see that ∅ ∈ 𝜓(𝐶). Let 𝐴, 𝐵 ∈ 𝜓(𝐶), 𝑉 ∈ 𝜏𝑓 and 𝐶 a connected component of 𝑋. 

If (𝐴 ∪ 𝐵) ⊃ 𝐶, then applying Lemma 2.6 and Lemma 3.3 we have 𝐶 ⊂ 𝐴 or 𝐵 ⊂ 𝐶, a contradiction. 

Therefore (𝐴 ∪ 𝐵) ⊅ 𝐶 and (𝐴 ∪ 𝐵) ∈ 𝜓(𝐶). It is trivial that (𝑉 ∩ 𝐴) ∈ 𝜓(𝐶). Finally, if 𝑃 ∩ 𝑄 ∈

𝜓(𝐶) for 𝑃, 𝑄 ∈ 𝜏𝑓 , then 𝑃 ∈ 𝜓(𝐶) or 𝑄 ∈ 𝜓(𝐶). Indeed, if we assume 𝑃 ∉ 𝜓(𝐶) then 𝐶 ⊂ 𝑃, and 

given that (𝑃 ∩ 𝑄) ⊅ 𝐶, it must hold that 𝑄 ⊅ 𝐶, that is 𝑄 ∈ 𝜓(𝐶). A similar result is obtained if we 

assume 𝑄 ∉ 𝜓(𝐶). 

Garcia-Mendoza et al (2021) further showed that this ideal is also a maximal ideal of 𝜏𝑓. Note that 

the axioms for an ideal of a semiring only consider the addition of a finite number of elements of the 

ideal to be an element of the ideal itself. However, it is also possible to show that for a primal space 

with a connected component 𝐶 composed of finite orbits, that the arbitrary union of elements of the 

ideal 𝜓(𝐶) is also an element of the ideal. For that, consider the collection {𝐴 ∈ 𝜏𝑓: 𝐴 ∈ 𝜓(𝐶)}. If we 

assume ⋃ 𝐴 ⊇ 𝐶𝐴∈𝜓(𝐶)  then applying Lemma 2.6 and Lemma 3.4 we have that there exists an open 

set 𝐴0 from the given collection such that 𝐶 ⊆ 𝐴0, a contradiction. It must hold then that ⋃ 𝐴𝐴∈𝜓(𝐶) ⊅

𝐶, and therefore ⋃ 𝐴𝐴∈𝜓(𝐶) ∈ 𝜓(𝐶). 

Theorem 4.3. Let (𝑋, 𝜏𝑓) be a primal space and 𝐺 the orbit of a point, then 𝜙(𝐺): =

{𝐴 ∈ 𝜏𝑓: 𝐴 ∩ 𝐺 = ∅} is a prime ideal of 𝜏𝑓. 

Proof: Let 𝐴, 𝐵 ∈ 𝜙(𝐺) and 𝑉 ∈ 𝜏𝑓. Since 𝐺 ∩ 𝐴 = ∅ and 𝐺 ∩ 𝐵 = ∅ then 𝐺 ∩ (𝐴 ∪ 𝐵) = ∅, which 

implies (𝐴 ∪ 𝐵) ∈ 𝜙(𝐺). It is trivial to see that 𝐴 ∩ 𝑉 ∈ 𝜙(𝐺), moreover 𝑋 ∉ 𝜙(𝐺) given that 𝑋 ∩

𝐺 ≠ ∅. It also holds that if 𝑃 ∩ 𝑄 ∈ 𝜙(𝐺) for some 𝑃, 𝑄 ∈ 𝜏𝑓 then 𝑃 ∈ 𝜙(𝐺) or 𝑄 ∈ 𝜙(𝐺). Indeed, 

let 𝑝 ∈ (𝑃 ∩ 𝐺) and 𝑞 ∈ (𝑄 ∩ 𝐺), if 𝑝 = 𝑞 then 𝑝 ∈ (𝑃 ∩ 𝑄) ∩ 𝐺 = ∅, a contradiction. On the other 
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hand, and without loss of generality, we assume 𝑝 ≠ 𝑞 and 𝑞 ∈ 𝑐𝑙(𝑝), then ker (𝑞) contains 𝑝 and 

ker(𝑞) ⊂ 𝑄. Therefore 𝑝, 𝑞 ∈ 𝑄 which implies (𝑃 ∩ 𝑄) ∉ 𝜙(𝐺), a contradiction. It follows that 𝑃 ∈

𝜙(𝐺) or 𝑄 ∈ 𝜙(𝐺). 

Theorem 4.4. Let (𝑋, 𝜏𝑓) be a primal space and 𝐺 a subset of a periodic orbit 𝐹, then 𝜙(𝐺) ≔

{𝐴 ∈ 𝜏𝑓: 𝐴 ∩ 𝐺 = ∅} is a prime ideal of 𝜏𝑓. 

Proof: Let 𝐴, 𝐵 ∈ 𝜙(𝐺) and 𝑉 ∈ 𝜏𝑓. Since 𝐺 ∩ 𝐴 = ∅ and 𝐺 ∩ 𝐵 = ∅ then 𝐺(𝐴 ∪ 𝐵) = ∅, which 

implies 𝐴 ∪ 𝐵 ∈ 𝜙(𝐺). It is clear that 𝐴 ∩ 𝑉 ∈ 𝜙(𝐺), moreover 𝑋 ∉ 𝜙(𝐺) since 𝑋 ∩ 𝐺 ≠ ∅. Finally, 

if 𝑃 ∩ 𝑄 ∈ 𝜙(𝐺) then 𝑃 ∈ 𝜙(𝐺) or 𝑄 ∈ 𝜙(𝐺). Indeed, if we assume 𝑝 ∈ (𝑃 ∩ 𝐺) and 𝑞 ∈ (𝑄 ∩ 𝐺) 

where 𝑝, 𝑞 are two distinct points of 𝐺, then we have that 𝑞 ∈ ker(𝑞) ⊂ 𝑄, and given that 𝐹 is a 

periodic orbit, then 𝑝 ∈ ker (𝑞). Therefore 𝑝, 𝑞 ∈ 𝑄, a contradiction. It follows that 𝑃 ∈ 𝜙(𝐺) or 𝑄 ∈

𝜙(𝐺). 

As with the previous ideal, it is possible to show that the arbitrary union of elements of the ideal 𝜙(𝐹) 

is also an element of the ideal itself.  

Proposition 4.1. Let (𝑋, 𝜏𝑓) be a primal space, 𝐹 a subset of 𝑋 and 𝜙(𝐹) ≔ {𝐴 ∈ 𝜏𝑓: 𝐴 ∩ 𝐹 = ∅}, 

then ⋃ 𝐴𝐴∈𝜙(𝐹) ∈ 𝜙(𝐹). 

Proof: If we assume ⋃ 𝐴𝐴∈𝜙(𝐹) ∉ 𝜙(𝐹), then (⋃ 𝐴𝐴∈𝜙(𝐹) ) ∩ 𝐹 ≠ ∅, therefore there exists 𝑥 ∈ 𝑋 such 

that 𝑥 ∈ ⋃ 𝐴𝐴∈𝜙(𝐹)  and 𝑥 ∈ 𝐹. Then it must hold that 𝑥 ∈ 𝐴0 for some 𝐴0 ∈ 𝜙(𝐹). This implies 𝐴0 ∩

𝐹 ≠ ∅, a contradiction. 

We now present some results regarding the primal topology induced on ℝ𝑛 by a linear transformation 

𝑓: ℝ𝑛 → ℝ𝑛. Recall that any linear transformation can be written in matrix form, that is, if 𝑓 is a 

linear transformation, then it can be written as 𝑓(𝑥) = 𝐴𝑥 with 𝐴 a square 𝑛 × 𝑛 matrix and 𝑥 ∈ ℝ𝑛. 

For instance, the linear transformation 𝑅𝑜𝑡: ℝ2 → ℝ2 associated with vector rotation in ℝ2 can be 

written as follows:  

𝑅𝑜𝑡(𝑣) = (
cos(𝜃) − sin(𝜃)

sin(𝜃) cos(𝜃)
) ⋅ 𝑣 

With 𝑣 ∈ ℝ2 and 𝜃 ∈ ℝ. This linear transformation induces a primal topology on ℝ2, and it can be 

seen that regardless of the choice of 𝜃, the primal space (ℝ2, 𝜏𝑅𝑜𝑡) will have an infinite number of 

connected components. This makes ℝ2 a non-connected topological space, characteristic that is not 

obtained when ℝ2 is equipped with the usual topology. Additionally, this transformation is invertible, 
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given that the associated matrix is invertible. Other interesting results arise from considering linear 

transformations associated with real entries matrices as the following: 

Example 4.2. Consider the following diagonal 𝑛 × 𝑛 matrix 

𝐴 = (
𝜆1 ⋯ 0
⋮ ⋱ ⋯
0 ⋯ 𝜆𝑛

) 

The function 𝑓: ℝ𝑛 → ℝ𝑛 defined as 𝑓 = 𝐴𝑣 with 𝑣 ∈ ℝ𝑛 induces a primal topology on ℝ𝑛, which 

can be denoted by 𝜏𝐴. 

It is evident that the open sets of this space will strongly depend on the values of the diagonal. If, for 

instance, one of the diagonal values 𝜆𝑖 = 0, then ker({0ℝ𝑛}) would be an infinite set given that every 

vector 𝑢 ∈ ℝ𝑛 with all coordinates equal to 0 except for the i-th coordinate will satisfy the equality 

𝐴𝑢 = 0ℝ𝑛. Note as well that in this case the matrix will not be invertible, and so the linear 

transformation is not invertible. On the other hand, if all values on the diagonal are distinct from zero, 

the determinant of the matrix A is not zero and the matrix is invertible. In this case the following 

holds. 

Lemma 4.4. Let 𝐴 = (
𝜆1 ⋯ 0
⋮ ⋱ ⋯
0 ⋯ 𝜆𝑛

) be a diagonal 𝑛 × 𝑛 matrix. If every 𝜆𝑖 ≠ 0 then 𝑘𝑒𝑟({0ℝ𝑛}) =

{0ℝ𝑛} and {0ℝ𝑛} ∈ 𝜏𝐴.  

Proof: If every 𝜆𝑖 ≠ 0, then for the system 𝐴𝑥 = 0ℝ𝑛 we have 𝜆𝑖𝑥𝑖 = 0, then 𝑥𝑖 = 0 for 𝑖 = 1,2, … , 𝑛 

which implies 𝑥 = 0ℝ𝑛 . Therefore ker({0ℝ𝑛}) = {0ℝ𝑛} and {0ℝ𝑛} ∈ 𝜏𝐴. 

In general, the following result is obtained: 

Corollary 4.1. Let 𝐴 = (
𝜆1 ⋯ 0
⋮ ⋱ ⋯
0 ⋯ 𝜆𝑛

) be a diagonal 𝑛 × 𝑛 matrix. If every 𝜆𝑖 ≠ 0 then {0ℝ𝑛} is 

clopen.  

Note as well that ℝ𝑛 equipped with this topology is not a connected topological space. We may now 

consider arbitrary linear transformations associated with a matrix 𝐴 of real entries. 

Lemma 4.5. If 𝐴 is an invertible matrix and 𝑈 ∈ 𝜏𝐴, then 𝑈 ∖ {0ℝ𝑛} ∈ 𝜏𝐴. 

Proof: We have 𝐴−1(𝑈 ∖ {0ℝ𝑛}) = 𝐴−1(𝑈) ∖ {0ℝ𝑛}. But since 𝑈 ∈ 𝜏𝐴 i.e., 𝐴−1(𝑈) ⊂ 𝑈, then 

𝐴−1(𝑈) ∖ {0ℝ𝑛} ⊂ (𝑈 ∖ {0ℝ𝑛}) which implies 𝐴−1(𝑈 ∖ {0ℝ𝑛}) ⊂ (𝑈 ∖ {0ℝ𝑛}).  
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Lemma 4.6. If 𝐴 is an invertible matrix, then 𝑀 ≔ {𝑈 ∈ 𝜏𝐴: 0ℝ𝑛 ∉ 𝑈} is an ideal of 𝜏𝐴. 

Proof: 0ℝ𝑛 ∉ ∅, then ∅ ∈ 𝑀. Let 𝑈, 𝑉 ∈ 𝑀, then 𝑈, 𝑉 ∈ 𝜏𝐴, therefore (𝑈 ∪ 𝑉) ∈ 𝜏𝐴. Moreover, 0ℝ𝑛 ∉

(𝑈 ∪ 𝑉), given that 0ℝ𝑛 ∉ 𝑈 and 0ℝ𝑛 ∉ 𝑉. If 𝑈 ∈ 𝑀 and 𝑊 ∈ 𝜏𝐴, then (𝑈 ∩ 𝑊) ∈ 𝜏𝐴. Moreover 

0ℝ𝑛 ∉ (𝑈 ∩ 𝑊) since 0ℝ𝑛 ∉ 𝑈, then (𝑈 ∩ 𝑊) ∈ 𝑀. 

Theorem 4.5. If 𝐴 is an invertible matrix, then 𝑀 ≔ {𝑈 ∈ 𝜏𝐴: 0ℝ𝑛 ∉ 𝑈} is a maximal ideal of 𝜏𝐴. 

Proof: If 𝑁 is an ideal of 𝜏𝐴 such that 𝑀 ⊊ 𝑁 then there exists 𝑉 ∈ 𝑁 such that 0ℝ𝑛 ∈ 𝑉. In particular 

we have that {0ℝ𝑛} = ({0ℝ𝑛} ∩ 𝑉) ∈ 𝑁. By Lemma 4.5 we have that (ℝ𝑛 ∖ {0ℝ𝑛}) ∈ 𝜏𝐴 and 

(ℝ𝑛 ∖ {0ℝ𝑛}) ∈ 𝑀 ⊂ 𝑁. Therefore ℝ𝑛 = [(ℝ𝑛 ∖ {0ℝ𝑛}) ∪ {0ℝ𝑛}] ∈ 𝑁, then 𝑁 = 𝜏𝐴 and 𝑀 is 

maximal.  

 

5. GROUP HOMOMORPHISMS AND PRIMAL TOPOLOGIES 

In this section we provide some generalizations to some results shown by Garcia-Mendoza et al 

(2021). More specifically, we generalize the notion of primal topologies induced on finite dimension 

vector spaces. 

Theorem 5.1. If the function 𝑓: 𝑋 → 𝑋 that defines the primal space (𝑋, 𝜏𝑓) is the identity function, 

then the space is zero-dimensional.  

Proof: If 𝑓 is the identity function, then 𝜏𝑓 is the discrete topology and for each 𝑥 ∈ 𝑋 we have 

𝑐𝑙(𝑥) = {𝑥}. From Lemma 3.3 by Garcia-Mendoza et al (2021), we have 𝜙({𝑥}) is a maximal ideal. 

In order to prove this Lemma, it is enough to show that any given prime ideal is also a maximal ideal. 

We prove this by showing that for a given prime ideal 𝑃 of 𝜏𝑓 there exists 𝑦 ∈ 𝑋 such that 𝑦 ∉ 𝑃 and 

𝜙({𝑦}) = 𝑃. Let 𝐴 ∈ 𝜙({𝑦}), then 𝐴 ∩ {𝑦} = ∅ ∈ 𝑃. Given that {𝑦} ∉ 𝑃 then it must hold 𝐴 ∈ 𝑃 and 

𝜙({𝑦}) ⊂ 𝑃 ⊂ 𝜏𝑓. Since 𝜙({𝑦}) is maximal, then 𝜙({𝑦}) = 𝑃. 

Definition 5.1. Let 𝐹: 𝐺 → 𝐻 be a group homomorphism. The set 𝐾𝐸𝑅(𝐹) ≔ {𝑥 ∈ 𝐺: 𝐹(𝑥) = 0𝐻} is 

called the algebraic kernel of 𝐹, where 0𝐻 is the identity element of the group 𝐻. 

It is a well-known result that if 𝐹: 𝐺 → 𝐻 is a group homomorphism then 𝐹 is 1-1 if and only if 

𝐾𝐸𝑅(𝐹) = {0𝐺}. We provide a topological characterization of 1-1 group homomorphisms. 

Theorem 5.2. Let 𝐺 be a group and 𝐹: 𝐺 → 𝐺 a group homomorphism. Then 𝐹 is 1-1 if and only if 

{0} ∈ 𝜏𝐹 . 
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Proof: Given that 𝐹 is a group isomorphism we have 𝐾𝐸𝑅(𝐹) = {0}, that is, {𝑥 ∈ 𝐺: 𝐹(𝑥) = 0} =

{0}, which means 𝐹−1({0}) = {0} and {0} ∈ 𝜏𝐹. On the other hand, if {0} ∈ 𝜏𝐹  then 𝐾𝐸𝑅(𝐹) =

𝐹−1({0}) ⊂ {0}, given that {0} ∈ 𝜏𝐹 , then {0} ⊂ ker({0}) ⊂ {0}, which implies 𝐾𝐸𝑅(𝐹) = {0} and 

𝐹 is 1-1.  

Corollary 5.1. If 𝐺 is a group anf 𝐹: 𝐺 → 𝐺 is an injective group homomorphism then {0} is clopen. 

Proof: By the previous Theorem we have that {0} is open. Given that 𝐹({0}) = {0} then {0} is also 

closed.  

Theorem 5.3. Let 𝑇: 𝐺 → 𝐺 be a group homomorphism and 𝑃 a prime ideal of 𝜏𝑇. If {0} ∉ 𝑃 then 𝑃 

is maximal and 𝑃 = 𝜙(0). 

Proof: Given that 𝑇 is a group homomorphism then 𝑇(0) = 0, which is equivalent to 𝑐𝑙(0) = 0, and 

by Lemma 3.3 by Garcia-Mendoza et al (2021) we have 𝜙(0) is a maximal ideal of 𝜏𝑇. Let 𝐴 ∈ 𝜙(0), 

then 0 ∉ 𝐴, which implies {0} ∩ 𝐴 = ∅ ∈ 𝑃. Given that 𝑃 is a prime ideal of 𝜏𝑇 and {0} ∉ 𝑃 then 

𝐴 ∈ 𝑃. Therefore 𝜙({0}) ⊂ 𝑃 and given that 𝜙({0}) is maximal we have 𝜙({0}) = 𝑃.  

 

6. CONCLUDING REMARKS 

In this paper we explored some of the properties of primal topologies seen as semirings. Some of the 

advantages of studying the algebraic properties of these topologies is reflected, for example, in 

Theorem 4.5. where it was possible to construct another algebraic condition for the invertibility of a 

matrix considering the topological and algebraic properties of the primal topology induced on ℝ𝑛 by 

the matrix. Moreover, considering topologies as semirings has opened the door to address certain 

problems in a novel way. For instance, the Collatz conjecture, a problem that has not been solved yet, 

can be studied from a topological point of view, given that the topology induced on ℕ is a primal 

topology. In this paper, some algebraic structures such as ideals, maximal and prime ideals are 

considered, which could shed light on the study of the conjecture.  
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