
6. REFERENCIAS
Acosta, A., Gallo, R., Garcı
́
a, P., y Peluffo-Ordóñez, D. (2022). Positive invariant regions for a modi-
fied Van Der Pol equation modeling heart action. Applied Mathematics and Computation, 442,
127732.
A.P. Kuznetsov and N.V. Stankevich and L.V. Turukina. (2009). Coupled van der Pol–Duffing osci-
llators: Phase dynamics and structure of synchronization tongues. Physica D: Nonlinear Phe-
nomena, 238(14), 1203-1215. https://doi.org/10.1016/j.physd.2009.04.001
Cardarilli, G. C., Nunzio, L. D., Fazzolari, R., Re, M., y Silvestri, F. (2019). Improvement of the
Cardiac Oscillator Based Model for the Simulation of Bundle Branch Blocks. Applied Sciences,
9(18), 3653. https://doi.org/10.3390/app9183653
Cartwright, M. L., y Littlewood, J. E. (1945). On Non-Linear Differential Equations of the Second
Order: I. the Equation y¨ - k (1-y 2 )y∙ y = b k cos(l ), k Large. Journal of the London
Mathematical Society, s1-20(3), 180-189. https://doi.org/10.1112/jlms/s1-20.3.180
Dixit, S., Sharma, A., y Shrimali, M. D. (2019). The dynamics of two coupled Van der Pol oscillators
with attractive and repulsive coupling. Physics Letters A, 383(32), 125930. https://doi.org/10.
1016/j.physleta.2019.125930
FitzHugh, R. (1961). Impulses and Physiological States in Theoretical Models of Nerve Membrane.
Biophysical Journal, 1(6), 445-466. https://doi.org/10.1016/s0006-3495(61)86902-6
Giacomini, H., y Neukirch, S. (1997). Number of limit cycles of the Liénard equation. Physical Review
E, 56(4), 3809-3813. https://doi.org/10.1103/physreve.56.3809
Ginoux, J.-M. (2017). History of Nonlinear Oscillations Theory in France (1880-1940). Springer In-
ternational Publishing. https://doi.org/10.1007/978-3-319-55239-2
Ginoux, J.-M., y Letellier, C. (2012). Van der Pol and the history of relaxation oscillations: Toward
the emergence of a concept. Chaos: An Interdisciplinary Journal of Nonlinear Science, 22(2),
023120. https://doi.org/10.1063/1.3670008
Grant, R. P. (1956). The mechanism of A-V arrhythmias. The American Journal of Medicine, 20(3),
334-344. https://doi.org/10.1016/0002-9343(56)90118-8
Grudziński, K., y Żebrowski, J. J. (2004). Modeling cardiac pacemakers with relaxation oscillators.
Physica A: Statistical Mechanics and its Applications, 336(1-2), 153-162. https://doi.org/10.
1016/j.physa.2004.01.020
Jawarneh, I., y Staffeldt, R. (2019). CONLEY INDEX METHODS DETECTING BIFURCATIONS
IN AMODIFIED VAN DER POL OSCILLATOR APPEARING IN HEARTACTION MO-
DELS. https://www.researchgate.net/publication/330775277
J.J.O’Connor y E.F.Robertson. (2008). Balthasar van der Pol. School of Mathematics and Statistics-
University of St Andrews, Scotland. https://mathshistory.st-andrews.ac.uk/Biographies/Van_
der_Pol/
Katholi, C., Urthaler, F., Macy, J., y James, T. (1977). A mathematical model of automaticity in the
sinus node and AV junction based on weakly coupled relaxation oscillators. Computers and
Biomedical Research, 10(6), 529-543. https://doi.org/10.1016/0010-4809(77)90011-8
Levinson, N. (1949). A Second Order Differential Equation with Singular Solutions. The Annals of
Mathematics, 50(1), 127. https://doi.org/10.2307/1969357
Levinson, N., y Smith, O. K. (1942). A general equation for relaxation oscillations. Duke Mathematical
Journal, 9(2). https://doi.org/10.1215/s0012-7094-42-00928-1
Low, L. A., Reinhall, P. G., Storti, D. W., y Goldman, E. B. (2006). Coupled van der Pol oscillators as a
simplified model for generation of neural patterns for jellyfish locomotion. Structural Control
and Health Monitoring, 13(1), 417-429. https://doi.org/10.1002/stc.133
DE LA CIENCIA
225 ISNN 2588-0764 REVISTA BASES