
Cabre, X., Fontich, E., y De la Llave, R. (2005, 11). The parameterization method for invariant
manifolds iii: Overview and applications. Journal of Differential Equations, 218, 444-515. doi:
10.1016/j.jde.2004.12.003
Calleja, R. C., Celletti, A., y de la Llave, R. (2022). Kam quasi-periodic solutions for the dissipative
standard map. Communications in Nonlinear Science and Numerical Simulation, 106, 106111. Des-
cargado de https://www.sciencedirect.com/science/article/pii/S1007570421004238
doi: https://doi.org/10.1016/j.cnsns.2021.106111
Chirikov, B. (1971). Institute of nuclear physics, novosibirsk (in russian). Preprint 267 (1969), Engl.
Transl. CERN Trans. 71–40, Geneva.
Chirikov, B. V. (1979). A universal instability of many-dimensional oscillator systems. Physics Re-
ports, 52(5), 263-379. Descargado de https://www.sciencedirect.com/science/article/
pii/0370157379900231 doi: https://doi.org/10.1016/0370-1573(79)90023-1
Cincotta, P. M., y Simó, C. (2020). Global dynamics and diffusion in the rational standard map.
Physica D: Nonlinear Phenomena, 413, 132661. Descargado de https://www.sciencedirect
.com/science/article/pii/S0167278919308140 doi: https://doi.org/10.1016/j.physd.2020
.132661
Devaney, R. L. (1989). An introduction to chaotic dynamical systems (Second ed.). Redwood City,
CA: Addison-Wesley Publishing Company Advanced Book Program.
Dzhalilov, A., Jalilov, A., y Mayer, D. (2018, 2). A remark on denjoy’s inequality for pl circle
homeomorphisms with two break points. Journal of Mathematical Analysis and Applications, 458,
508-520. doi: 10.1016/J.JMAA.2017.09.003
Fontich, E. (2006, 01). The parameterization method for invariant manifolds.
Haro, A. (2016, 04). An overview of the parameterization method for invariant manifolds. En (p. 1-
28). doi: 10.1007/978-3-319-29662-3_1
Hernández-Corbato, L., Ortega, R., y Ruiz del Portal, F. R. (2012). Attractors with irrational rotation
number. Mathematical Proceedings of the Cambridge Philosophical Society, 153(1), 59–77. doi:
10.1017/S0305004111000788
Kwapisz, J. (2000). Poincaré rotation number for maps of the real line with almost periodic dis-
placement. Nonlinearity, 13(5), 1841–1854. Descargado de http://dx.doi.org/10.1088/
0951-7715/13/5/320 doi: 10.1088/0951-7715/13/5/320
Liousse, I. (2005). Nombre de rotation, mesures invariantes et ratio set des homéomorphismes affines
par morceaux du cercle. Annales de l’Institut Fourier, 55, 431-482. doi: 10.5802/aif.2103
Misiurewicz, M. (s.f.). Rotation theory. En Dynamical systems and applications: Recent progress.
Oswaldo, L. (2021). Existence of invariant curves for the equation of the microtron. Journal of
Mathematical Control Science & Applications (JMCSA).
Publicación Cuatrimestral. Vol. 7, No. 3, Septiembre/Diciembre, 2022, Ecuador (p. 89 -106) 105