
Aloui, B., y Khériji, L. (2019). Connection formulas and representations of laguerre polynomials in
terms of the action of linear differential operators. Проблемы анализа, 8(3), 24–37.
Askey, R., y Wainger, S. (1965). Mean convergence of expansions in Laguerre and Hermite series.
American Journal of Mathematics, 87(3), 695–708. doi: 10.2307/2373069
Cacao, M., I. Falcao. (2011). Laguerre deivative ang monogenic laguerre polynomials. An Operational
Approach Math Comput, Modelling 53.
Gadzhimirzaev, R. M. (2020). Integral estimates for laguerre polynomials with exponential weight
function. Russian Mathematics, 64(4), 12–20.
Kazmin, Y. A. (1969). On appell polynomials. Mat. Zametki.
Kim, T., San Kim, D., Hwang, K.-W., y Seo, J. J. (2016). Some identities of Laguerre polynomials
arising from differential equations. Advances in Difference Equations, 2016(1), 1–9. doi: 10.1186/
s13662-016-0896-1
Malonek, G., H.R. Tomaz. (2011). Laguerre polynomials in several hypercomplex variables and their
matrix representation. Computational Science and its Applications.
Muckenhoupt, B. (1970a). Mean convergence of Hermite and Laguerre series. I. Transactions of the
American Mathematical Society, 147(2), 419–431. doi: 10.2307/1995204
Muckenhoupt, B. (1970b). Mean convergence of hermite and laguerre series. ii. Transactions of the
American Mathematical Society, 147(2), 433–460. doi: 10.2307/1995205
Poiani, Eileen L. (1972). Mean Cesaro summability of Laguerre and Hermite series. Transactions of
the American Mathematical Society, 173, 1–31. doi: 10.1090/S0002-9947-1972-0310537-9
Pollard, H. (1946). The mean convergence of orthogonal series of polynomials. Proceedings of the
National Academy of Sciences of the United States of America, 32(1), 8. doi: 10.1073/pnas.32.1.8
Pollard, H. (1948). The mean convergence of orthogonal series. ii. Transactions of the American
mathematical society, 63(2), 355–367. Descargado de https://www.ams.org/journals/tran/
1948-063-02/S0002-9947-1948-0023941-X/S0002-9947-1948-0023941-X.pdf
Qi, F. (2018). Simplifying coefficients in a family of ordinary differential equations related to the
generating function of the laguerre polynomials. Applications and Applied Mathematics: An Inter-
national Journal (AAM), 13(2), 9.
Riahifar, A., y Matinfar, M. (2018). Application of laguerre polynomials for solving infinite boundary
integro-differential equations. International Journal of Industrial Mathematics, 10(2), 143–149.
Riera, M. P. (1989). Series de Fourier respecto de sistemas ortogonales : estudio de la convergencia
en espacios de Lebesgue y de Lorentz (Tesis Doctoral, Universidad de Zaragoza). Descargado de
http://anamat.unizar.es/mperez/preprints/tesisMPerez.pdf
Shao, W. K., He, Y., y Pan, J. (2016). Some identities for the generalized Laguerre polynomials. J.
Nonlinear Sci. Appl, 9(5), 3388–3396. doi: 10.22436/JNSA.009.05.124
Publicación Cuatrimestral. Vol. 7, No. Especial, Diciembre, 2022, Ecuador (p. 256 -270) 269