Jesús Miguel Contreras-Ramírez, Dimas Alejandro Médina, Meribary Margarita Monsalve
36
Contreras-Ramírez, J., & Monsalve, M. (2020). Synthesis and characterization of poly(1-methyltrimethylene carbonate)
(PMTMC) by mean ring-opening polymerization. Revista bases de la ciencia, 5, 21-36. Doi:
10.33936/rev_bas_de_la_ciencia.v5i3.1863.
Contreras-Ramírez, J., & Monsalve, M. (2021). Ring-Opening Polymerization of 2,2-Dimethyltrimethylene Carbonate
Using Samarium Acetate (III) as an Initiator. Polym. Sci. Ser B+, 63, 94–102. Doi: 10.1134/S1560090421020044.
Contreras-Ramírez, J., Medina, D., & Monsalve, M. 2021. Poliésteres como biomateriales. Una revisión. Revista bases
de la ciencia, 6, 113-136. Doi: 10.33936/rev_bas_de_la_ciencia.v6i2.3156
Contreras-Ramírez, J., & Monsalve, M. (2022). Synthesis and characterization of poly(trimetylene carbonate-co-ε-
caprolactone) prepared by ring-opening polymerization using samarium(III) acetate as initiator. Int. J. Polym. Anal.
Charact., 27, 16-31, Doi: 10.1080/1023666X.2021.1992580.
Cota, I. (2017). Developments in the use of rare earth metal complexes as efficient catalysts for ring-opening
polymerization of cyclic esters used in biomedical applications. Phys. Sci. Rev. 2, 20160129. Doi:10.1515/psr-2016-0129
Dash, T., & Konkimalla, B. (2012). Polymeric Modification and Its Implication in Drug Delivery: Poly-ε-caprolactone
(PCL) as a Model Polymer. Mol. Pharm., 9, 2365-2379. Doi: 10.1021/mp3001952
Dobrzynski, P. (2002). Synthesis of biodegradable copolymers with low-toxicity zirconium compounds. III. Synthesis
and chain-microstructure analysis of terpolymer obtained from L-lactide, glycolide, and ϵ-caprolactone initiated by
zirconium(IV) acetylacetonate. J. Polym. Sci. Pol. Chem., 40, 3129-3143. Doi: 10.1002/pola.10401
Edlund, U., Albertsson, A., Singh, S., Fogelberg, I., & Lundgren, B. (2000). Sterilization, storage stability and in vivo
biocompatibility of poly(trimethylene carbonate)/poly(adipic anhydride) blends. Biomaterials, 21, 945-955. DOI:
10.1016/s0142-9612(99)00268-9
Hofman, A., S1omkowski, S., & Penczek, S. (1984). Structure of active centers and mechanism of the anionic
polymerization of lactones. Makromol. Chem., 185, 91-101. Doi: 10.1002/macp.1984.021850110.
Hofman, A., Szymanski, R., S1omkowski, S., & Penczek, S. (1984). Structure of active species in the cationic
polymerization of β-propiolactone and ε-caprolactone. Makromol. Chem., 185, 655-667. Doi:
10.1002/macp.1984.021850405.
Huang, M., Chou, A., Lien, S., Chen, H., Huang, C., Chen, W., Chong, P., Liu, S., & Leng, C. (2009). Formulation and
immunological evaluation of novel vaccine delivery systems based on bioresorbable poly(ethylene glycol)-block-
poly(lactide-co-ε-caprolactone). J. Biomed. Mater. Res. B., 90, 832-841. Doi:10.1002/jbm.b.31352
Jérôme, C., & Lecomte, P. (2008). Recent advances in the synthesis of aliphatic polyesters by ring-opening
polymerization. Adv. Drug Del. Rev., 60, 1056-1076. Doi: 10.1016/j.addr.2008.02.008
Kamaly, N., Yameen, B., Wu, J., & Farokhzad, C. (2016). Degradable Controlled-Release Polymers and Polymeric
Nanoparticles: Mechanisms of Controlling Drug Release. Chem. Rev. 116, 2602–2663. Doi:
10.1021/acs.chemrev.5b00346.
Kasperczyk, J., & Bero, M. (1991). Coordination polymerization of lactides, 2. Microstructure determination of
poly[(L,L-lactide)-co-(ε-caprolactone)] with 13C nuclear magnetic resonance spectroscopy. Makromol. Chem., 192,
1777-787. Doi: 10.1002/macp.1991.021920812
Khan, F., Tanaka, M., Ahmad, S. Fabrication of polymeric biomaterials: a strategy for tissue engineering and medical
devices. (2015). J. Mater. Chem. B., 3, 8224–8249. Doi: 10.1039/C5TB01370D
Kricheldorf, H., & Dunsing, R. (1986). Polylactones, 8. Mechanism of the cationic polymerization of L,L-dilactide.
Makromol. Chem., 187, 1611-1625. Doi: 10.1002/macp.1986.021870706
Ling, J., Zhu, W., & Shen, Z. 2004. Controlling ring-opening copolymerization of ε-caprolactone with trimethylene
carbonate by scandium tris(2,6-di-tert-butyl-4-methylphenolate). Macromolecules, 37:758-763. Doi: 10.1021/ma035352f
Lu, X., Sun, Z., Cai, W., Gao, Z. (2008). Study on the shape memory effects of poly(L-lactide-co-ε-caprolactone)
biodegradable polymers. J. Mater. Sci.: Mater. Med. 19, 395-399. Doi: 10.1007/s10856-006-0100-3
Madhavan, K., Nair, N., & John, R. (2010). An overview of the recent developments in polylactide (PLA) research,
Bioresource Technology, 101, 8493-8501. DOI:10.1016/j.biortech.2010.05.092
Medina, D., Contreras, J., López-Carrasquero, F., Cardozo, E., & Contreras, R. (2017). Use of samarium(III)–amino acid
complexes as initiators of ring-opening polymerization of cyclic esters. Polym. Bull., 75(3), 1253–1263.
Doi:10.1007/s00289-017-2089-9
Monsalve, M., Contreras, J., & López-Carrasquero, F. (2009). Suplemento de la Revista Latinoamericana de Metalurgia
y Materiales, S2 (1),137-138.
Monsalve, M., Contreras, J. (2014). Carbonatos orgánicos cíclicos como monómeros: síntesis y caracterización. Revista
Científica UNET, 26:67-79.
Monsalve, M., Contreras, J., Cardozo, E., Contreras; R. (2015). Evaluación de la actividad de complejos de samario (III)
con ácido L-aspártico, ácido L-glutámico, glicina y o-fenantrolina, como iniciadores en la polimerización de carbonatos
cíclicos. Avances en Química, 10, 129-137.
Orchel, A., Jelonek, K., Kasperczyk, J., Dobrzynski, P., Marcinkowski, A., Pamula, I., Orchel, J., Bielecki, I., &
Kulczycka, A. (2013). The Influence of Chain Microstructure of Biodegradable Copolyesters Obtained with Low-Toxic