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Resumen

Este trabajo presenta una solucion aproximada del problema de Dirichlet para
la ecuacion de Poisson en dos dimensiones, en un dominio con geometria de
medio lente. A partir de la funcion de Green especifica para este dominio, se
obtuvo una solucion particular basada en la representacion integral del problema. A
continuacion, se implemento6 un enfoque numérico en MATLAB para evaluar dicha
representacion integral. Los resultados numéricos presentados en tablas y graficos,
demuestran el rendimiento del método con métricas del tiempo computacional.
Esta solucion representa un primer acercamiento a proéximas implementaciones
numéricas en métodos rapidos como Transformada Rapida de Fourier.

Palabras clave: Problema de frontera de Dirichlet, medio lente, ecuacion de
Poisson, aproximacion numérica.

Abstract

This work presents an approximate solution to the Dirichlet problem for the
two dimensional Poisson equation in a half lens domain. Based on the Green’s
function specific to this domain, a particular solution was derived obtaining the
integral representation of the problem. Subsequently, a numerical approach was
implemented in MATLAB to evaluate this integral representation. The numerical
results, presented in tables and plots, demonstrate the method’s performance
using metrics such as execution time. This solution represents a first step toward
future numerical implementations using fast algorithms, including the Fast Fourier
Transform.

Keywords: Dirichlet boundary value problem, half lens domain, Poisson’s
equation, numerical approximation.

Resumo

Este trabalho apresenta uma solucdo aproximada para o problema de Dirichlet
da equagdo de Poisson em duas dimensdes, em um dominio com geometria
de meia lente. A partir da fun¢do de Green especifica para esse dominio, foi
obtida uma solugdo particular baseada na representacao integral do problema. Em
seguida, foi implementada uma abordagem numérica no MATLAB para avaliar
essa representagdo integral. Os resultados numéricos, apresentados em tabelas e
graficos, demonstram o desempenho do método com métricas como o tempo de
execugdo. Esta solugdo representa um primeiro passo para futuras implementagdes
numéricas com algoritmos rapidos, como a Transformada Répida de Fourier.

Palavras chave: Problema de fronteira de Dirichlet, meia lente, equacdo de
Poisson, aproximagdo numérica.
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1. Introduction

The Poisson equation plays an important role in analyzing physical problems across multiple fields. Although exact and approximate
solutions exist for simple geometries like rectangles and disks, solving it in more complex domains such as half lens, remains
especially challenging.

Analytical solutions to the Dirichlet problem for the Poisson equation have also been the subject of extensive research in a variety
of domains, including the circular ring, infinite horizontal strip of width 7, cracked half-plane, doubly connected domains,
and lens shaped domain (Cedeflo & Vanegas, 2022; Taghizadeh & Mohammadi, 2017; Vaitsiakhovich, 2008; Velez Cantos &
Vanegas Espinoza, 2022; Vergara Ibarra & Vanegas Espinoza, 2022). These solutions are typically derived by constructing an
appropriate Green’s function, which is then employed to obtain the solution via an integral representation.

Moreover, approximated solutions to Dirichlet problems for the Poisson equation in lens-like domains are crucial for progress
in applied optics, modeling, and the predictive study of light behavior in complex cosmological contexts (Mandelbaum, 2018),
as well as in metamaterials research aimed at improving performance in applications like solar photovoltaic systems (Memarian
& Eleftheriades, 2013).

In addition, efficient and accurate computation of solutions using Green’s function for Poisson equation has been applied in
rectangular waveguides and acoustic flows taking advantage of MATLAB’s computational capabilities to obtain numerical
solutions to complex partial differential equations (Berger & Lasher, 1958; Cogollos y col., 2009; Harwood & Dupére, 2012;
Shior y col., 2024).

This paper deals with the Dirichlet boundary value problem for the Poisson equation as the form:

Wy = f in Qa w=7 on 8Qa ’Y(m - ’I") = ,7(1) =0, (1)
for f € L1(2;C)NC(Q;C), v € C(9;C) and w is the solution in the space C?(2;C) N C(2; C).
As for the lens domain A (Begehr & Vaitekhovich, 2014), this can be constructed by A = DN D,,, (1), where D = {z : |z| < 1}

denotes the unit disk and D,,,(r) = {z : |z — m| < r} represents a disk centered at m with radius r, satisfying 0 < r < 1 < m,
and 72 + 1 = m?. Consequently, the half lens ) is defined by Q = {z € A : I'm z > 0} which is depicted in Figure 1.

Note that the domain (2 has three distinct boundaries defined by z € (m — r, 1), thatis, z = z. For z € 9Qyp, thatis, 2z = 1
and z € Qp, , thatis, |z —m| =r.

Im(z)

Figura 1. The half lens (2.
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Dirichlet problems for the Poisson equation represent a significant class of elliptic partial differential equations problems that
have been extensively studied. Traditionally, solving the Dirichlet boundary value problems for the Poisson equation relies on
the use of integral representation equation involving Green’s functions.

2. Mathematical Foundations

2.1. Analytical solution to the Dirichlet problem for Poisson equation in half lens

Teorema 2.1. The Dirichlet problem

Wez = f inQ, w= Y on 697 fY(m - T) = 7(1) =0, (2)
has a unique solution, given specified functions f € C(Q2,C) and v € C (99, C). The solution is explicitly provided by
1 ! z—Z Z2—Z
= — t — 3
w=) = 5 /m_ﬂ( ) {|tz|2 ot — 12 ®)

t(1 —mz) = (m—2)?  [t(m —2) — (1 —mz)[?

1 1—|z|2_17|z\2
" ori /mﬂ(o [c —P T TP

r2(1 — |z*) r2(1— |2) ]dé

r?(z — 2) r?(z — 2) } it

C=mz) = (m—2)F " [C0—m2) — (m— )P ¢
1 ) e T
2 oo, [ C—2F " lc-mP | Tom

—1/ﬂoawo«w,
T™J0

where G1(z, () is the harmonic Green function for the half lens § given by:
2

g (€220 = 201 = m2) — (m = ) (Cm — 2) — (1= m2) “
(€ —2)(1 = 20)(¢(1 —mz) — (m — 2))(¢(m — z) — (1 —mz))
For z € (m —r,1), that is, z = Z, implies that
a?)zGl(Za C) = *Z(az - 62)G1(Z, C) (5)
B 1 ¢ m¢ —1 —m
=t | e e G ()
for z € OQp, that is, zz = 1, it follows that
0y.G1(2,¢) = (20, + 20:)G1(z, () (6)
_ z 1 z(¢—m) (m—¢) }
‘4&{<—z+1—z<+«m—zw41—m@ Sme—D = (—m)]’
and for z € O0p,, that is, |z — m| = r, thus
0,610 = (52 ) o+ () 01 ) 6.0 ™
1 z—m ((z—m) ¢r? r2
‘/m%c—z+1—x wM—n—@—m+rm—a—u—mJ‘
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Given a specific f and v, a particular solution can be obtained using the integral representation in Equation (3) to evaluate
numerical results against an exact solution. Possible singularities arise when any of the following terms in the denominator of
the Green function in Equation (4) becomes zero:

1. (¢—2):
o Singular if ( = z.
2. (1= 20):

1

o Singular if z( = 1, or equivalently { =

3. (C(1=mz) = (m—2)):
o Singular if:

m—z
¢= 1—mz’
4. (C(m—2)— (1 —mz2)):
o Singular if:
_1—mz
¢= m—z

These singularities may influence the evaluation depending on the location of z. When z lies within the domain, singularities 1
and 2 may arise, whereas on the boundary, singularities 3 and 4 may occur. These singular points must be avoided during the
numerical evaluation of the method.

Proof. The proof of the theorem is by similar manner as in (Taghizadeh & Mohammadi, 2017).

3. Discrete Formulation

L Refy)

Figura 2. Discretization of the half lens Q2 with M =10, N =72, R=1,r = 0,8 and m = 1,28.
il

To numerically solve the Dirichlet boundary value problem for the two dimensional Poisson equation in a half lens domain, the
domain is first discretized into a mesh of collocation points. A symbolic solution is then computed for a particular problem. The
numerical approximation is obtained by evaluating the integral representation derived from the associated Green’s function, as
presented in the analytical work of Taghizadeh y Mohammadi (2017). At each collocation point, the integrals over the domain
are approximated using numerical quadrature through MATLAB’s integral?2 function, while boundary integrals are evaluated
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using the integral function with waypoints option to trace the complex contour.

The discretized integral values are assembled into a solution vector, denoted by &, which contains approximations to the solution
at each collocation point. This formulation avoids the need to solve a large linear system, as the integral is evaluated directly at
each point.

3.1. Domain Discretization

A half lens domain is defined as a mesh of collocation points formed by the points in the interception of the unit disk and a
disk centered at m with radius r satisfying0 < r < 1 < m, 7> +1 =m?and z € A : Im z > 0 as illustrated in Figure 2.
Considering the discretization of both disk using same values N x M lattice points with N points in the angular direction and
M distinct points in the radial direction, need not to be equidistant.

3.2. Symbolic solution to the problem

Computer algebra system Mathematica was used to implement Algorithm 1 and obtain a symbolic solution to the Dirichlet
problem. The script defines the Green’s function for the half lens domain, following the formulation by Taghizadeh y Mohammadi
(2017), and computes its normal derivative symbolically using the D function. Symbolic integrals are evaluated using the
Integrate function, and the resulting expression is simplified for analytical clarity with the Simplify command.

Algorithm 1 Symbolic solution of the Dirichlet problem for the Poisson equation in a half lens domain

1: Define the boundary function ~y(t) > Boundary condition on the half lens
2: Define the source function f(() > Right-hand side of the Poisson equation
3: Define the Green’s function G (z, ()

4: Compute the integral over the interval [m — r, 1]:

11 (2=2) _ _(2—3%) r2(z—%) _ r2(z—%)
27 fm—r'Y(t) |t—=z|2 |tz—1|2 + [t(1—mz)—(m—2z)|2 \t(m,fz)—(l—mz)\2> dt
5: Compute the integral over the boundary of the unit disk Qp:

1 2 ((a=1z1%) _ a-1z1?) _ r2(1-12|%) r2(1-]21%)
Integral2 ¢ 225 foap, “o iz ~ Tema? T Rammn—m=n? T eamm—m=nr? ) €

6: Compute the integral over the boundary of the smaller domain Qp,,, :
)"2 277712 7‘2 Z*'IYLQ 7‘2 27777/2 )"2 277712
Integral3 — 577 fanom — ( |‘<—z|2‘ - \1‘—z<\2! *ca fm‘Z)f(JIfZ) Z - |<(1—m‘z>—<v‘n—z> 2 ) d¢
7: Compute the domain integral with Green’s function over the half lens domain €2:
Integrald < — % [f, £({)G1(z,¢) dCdn
8: Combine the contributions to define the solution w(2):
@(z) < Integrall + Integral2 + Integral3 + Integral4

Integrall <—

This symbolic solution &(z) provides an integral representation function which can serve for numerical evaluation.

3.3. Integral evaluation

According to Harwood y Dupére (2012), when employing the integral equation formulation, one generally requires a fundamental
solution to the governing differential equation to construct the overall solution. This fundamental solution also satisfies the
boundary conditions, in which case it is referred to as a Green’s function. Once available, as demonstrated in the work of
Taghizadeh y Mohammadi (2017), it enables the solution of the problem via its integral representation, which is then be evaluated
numerically at each collocation point in the domain and along the boundaries.

The numerical integration scheme used to handle the radial direction in the domain is numerical quadrature through MATLAB’s
functions (Shampine, 2008a, 2008b).

Furthermore, MATLAB’s native functions, designed for real-valued integrals, require meticulous handling of complex integrands,
typically by separating real and imaginary components, which amplifies computational cost. In this type of integrals challenges
arise in managing the high-dimensionality and avoid singularities, especially if the integrand is coupled with multiple complex
conjugate terms and absolute values.
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4. Numerical results and discussion

In this section, we present numerical experiments computed using Matlab R2022b on a 64-bit Apple M1 chip with 8 GB of
RAM, running macOS version 12.3.1.

Some parameters remains constant across all experiments such as: R = 1,0, r = 0,8, m = /1 + r2, tolerance parameter was
set to 1le — 3, indicating that points within 0,01 units of the boundary are considered boundary points (red) as shown in Figure 3.

Other parameters correspond to the half lens domain discretization, refining mesh in angular direction (/V) and radial direction
(M).

Note that, when solving the problem, different values of IV and M were used. The values considered include 64, 128, 256, 1024
and various combinations of these values were analyzed.

0.5

() (b)

Figura 3. a) Discretization of the half lens without points on the boundary corresponding to the disk with radius r due to the
absence of tolerance verification. b) Discretization with tolerance verification using a value of 1le — 3, including points on all
the domain boundary.

Test were conducted in the domain discretization with N = 64, M = 128 providing a starting reference of the domain refinement
process, which improve in a dense and consistent distribution of collocation points along the curved boundary and within the
domain with parameters N = 1024, M = 1024. The concentration of points near the curved boundary is particularly noteworthy,
as illustrated in Figure 4.

(@) (b)

Figura 4. a) Discretization of the half lens parametrized with NV = 64, M = 128 b) Refined domain discretization of the half
lens parametrized with N = 1024, M = 1024

Using collocation points is efficient in the half lens, as they adapt well to the curvature and align closely with the boundary.
This approach is advantageous for ensuring that numerical solutions to partial differential equations are accurate in regions of
geometric complexity.
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4.1. Problem 1
Consider the Dirichlet problem for the Poisson equation:
W,y =€° enf), ®)

w=22 end,

Algorithm 1 provides the symbolic calculation of the solution to Problem 1. To optimize computation time of this algorithm,
it was performed on a high-performance computer, specifically an Alienware M16 R2 equipped with an Intel Core Ultra 9
processor and 64 GB of RAM.

The particular solution obtained is as follows:

L 924 ( =Q)(=14mtmz={)(m—ztmz=) (= 1+zé)>
w(Z):_iZ/ (z—=C)(—1+m+mz—C()(m—z+mz—)(—14+2¢)
210 Jor (2 =€) (—1+m+mzf§)2( —m(1l+2)+ )?(—1+ 2()?

X [2(=14+m+mz—()—((z—)(m—z+mz—()(—1+ 2()
+(=1+m+mz—C)(m—z+mz—)(~1+2()
+(=1+m+mz—C(m—z+mz—)(—1+ 20
+(=14+m+mz—C)(m—z+mz—{)(~1+2()

T a(s = (=1 +m+mz—C)m— 2 +mz — )1+ 20)

% (z = (=1 +m+mz - O)m — = +mz — )

d
xd—CC
+(=1+m+mz—C)(—2+)(z — (1+z)+<j)(1—z§)
X (=14 m+mz—)(— Z+C)(1fZC)dCC

— (=01 +m+mz—)(m —z+mz—()(=1+2()

X (z=Q)(m —z+mz—()(-1 “OdgC dq. ©)

This function obtained via Mathematica is an integral representation of the solution to the Equation 8. The integral is evaluated
pointwise using MATLAB’s integral function, allowing the numerical computation of & on domain (z) and boundary points
({). The integration limits are [m — r, 1], in this case r = 0,8, m = 1,2, then m — r = 0,48.

N/M 64 128 256 512 1024
64 094s 1.10s 1.71s  2.25s 3925
128 | 1.13s 1.54s 3.08s 394s 1043s
256 | 1.83s 2.72s 5.64s 8.02s 2091s
512 | 323s 540s 11.47s 17.81s 41.48s
1024 | 576 s 1097s 17.07s 40.0ls 68.17s

Tabla 1. Execution times in seconds for various values of N and M

Execution times are presented in Table 1 for different combinations of the radial direction M and angular direction N in the
evaluation of integral representation in Equation 9 over a half lens domain. From a computational perspective, the cost increases
monotonically with M and IV , as expected due to the increased number of evaluation points.
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Notably, the time growth appears to be roughly quadratic in terms of grid size, aligning with the fact that a finer discretization
exponentially increases the number of integral evaluations. Various experiments demonstrate that fixing M and varying N
enhances the visualization of the domain, as the angular distribution of points provides greater detail along the curved boundary
of the lens-shaped region as Figure 5 sugest for the imaginary part of the solution.

Therefore, the results support the strategy of refining N while keeping M moderate to achieve good results between computational
cost and visual fidelity.

%102 %102
25 25

y
o /{Z/ ;

0.4 05 0.6 0.7 0.8 0.9 1
Re(z)

Im(z)

(@) (b)
Figura 5. a) Imaginary part of the solution for the parametrized domain with M= 128 and N=512 b) Imaginary part of the
solution for the parametrized domain with M= 512 and N=128

To visualize the results, the real part and imaginary part of the solution were generated as shown in Figure 6. Each plot displays
the function’s values at domain and boundary points using color coded scatter plots over the complex plane. One can verify
the smoothness of the solution, its behavior near the boundary, and the overall effectiveness of the integral representation in
capturing the properties within the domain.

05+

0.4

Im(z)

0.3

0.2 \ 15

25

(2) (b)

Figura 6. a) Imaginary part of the solution for the parametrized domain with M= 1024 and N=1024 b) maginary part of the
solution for the parametrized domain with M= 1024 and N= 1024

Figure 6 shows plots computed over a parametrized half lens domain with parameters M = 1024 and N = 1024. The structure
and smooth variation of both parts observed regularity and lack of discontinuities or singularities. Moreover, the function appears
to respect boundary conditions regularly.

The results show no signs of numerical instability, with imaginary and real parts exhibiting continuous gradients and physically
plausible behavior under the constraints of the problem. The symmetry and boundary conformity of the plots further affirm the
reliability of the implementation.
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5. Conclusions

A particular solution based on the Green’s function and its integral representation is employed in Mathematica to obtain a
symbolic formulation for the Dirichlet problem associated with the Poisson equation on a half lens domain. This representation
serves as the foundation for implementing a numerical approximation using Matlab integral functions.

The discretization of the domain and its boundary is governed by two parameters, /N and M, corresponding to the angular
and radial distribution of collocation points, respectively. Numerical experiments and visualizations indicate that maintaining a
moderate value for M while refining N yields a favorable balance between computational efficiency and solution accuracy.

Timing results confirm that increased resolution significantly impacts computational time; however, such refinement is essential
to capturing the fine structure of the solution. In experiments, setting N = M = 1024 offers a good approximation, beyond
additional refinement that yields marginal improvement. The computed solution is smooth, visually coherent and consistent.

Future work may involve implementing a fast algorithm to compare to traditional numerical methods and to improve computational
efficiency.

6. Referencias
Begehr, H. & Vaitekhovich, T. (2014). Schwarz problem in lens and lune. Complex Variables and Elliptic Equations, 59(1),
76-84.

Berger, J. M. & Lasher, G. J. (1958). The use of discrete Green’s functions in the numerical solution of Poisson’s equation.
Hllinois Journal of Mathematics, 2(4A).

Cedefio, R. & Vanegas, C. (2022). Funciéon de Green via mapeo conforme para el semiplano superior agrietado. Matematica-Revista
tecnologica ESPOL, 20.

Cogollos, S., Taroncher, M. & Boria, V. E. (2009). Efficient and accurate computation of Green’s function for the Poisson
equation in rectangular waveguides. Radio Science, 44(3).

Harwood, A. R. G. & Dupere, 1. D. J. (2012). Numerical Evaluation of the Compact Green'’s Function for the Solution of Acoustic
Flows. American Society of Mechanical Engineers.

Mandelbaum, R. (2018). Weak Lensing for Precision Cosmology. Annual Review of Astronomy and Astrophysics, 56(1),393-433.

Memarian, M. & Eleftheriades, G. V. (2013). Light concentration using hetero-junctions of anisotropic low permittivity metamaterials.
Light: Science and Applications, 2(11), el114-e114.

Shampine, L. (2008a). Matlab program for quadrature in 2D. Applied Mathematics and Computation, 202(1), 266-274.

Shampine, L. (2008b). Vectorized adaptive quadrature in MATLAB. Journal of Computational and Applied Mathematics,
211(2), 131-140.

Shior, M., Agbata, B., Obeng-Denteh, W., Kwabi, P., Ezugorie, 1., Marcos, S., Asante-Mensa, F. & Abah, E. (2024). Numerical
solution of partial differential equations using MATLAB: Applications to one-dimensional heat and wave equations.
Scientia Africana, 23(4), 243-254.

Taghizadeh, N. & Mohammadi, V. S. (2017). Dirichlet and Neumann problems for Poisson equation in half lens. Journal of
Contemporary Mathematical Analysis (Armenian Academy of Sciences), 52(2), 61-69.

Vaitsiakhovich, T. (2008). Boundary value problems for complex partial differential equations in a ring domain (Tesis doctoral).

Velez Cantos, C. & Vanegas Espinoza, C. (2022). Funcion de Green en una franja horizontal infinita de amplitud pi con frontera
mixta Dirichlet-Neumann usando el método parqueting-reflections. Matematica ESPOL - FCNM Journal, 20.

Vergara Ibarra, J. & Vanegas Espinoza, C. (2022). El Kernel de Poisson para un dominio doblemente conexo. Matematica
ESPOL - FCNM Journal, 20.

@@@@ Bases de la Ciencia
BY _NC__ND ¥ revista.bdlaciencia@utm.edu.ec Revista de la Facultad de Ciencias Basicas |22

ISNN 2588-0764 Vol. 10, Num. 2 (14-23): Mayo-Agosto, 2025 DOI:10.33936/ revbasdelaciencia.v10i2.7544


https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
revista.bdlaciencia@utm.edu.ec

0 https://revistas.utm.edu.ec/index.php/Basedelaciencia

UNIVERSIDAD BASES DE LA CIENCIA
TECNICA DE REVISTA CIENTIFICA
MANABL FACULTAD DE CIENCIAS BASICAS

Portoviejo - Manabi - Ecuador

7. Contribution of the authors

Author Contribution
Diego Toala  Article design, manuscript writing, and literature review
Judith Vanegas Methodology, review, and literature review

Bases de la Ciencia

23| Revista de la Facultad de Ciencias Basicas @

] revista.bdlaciencia@utm.edu.ec

Vol. 10, Num. 2 (14-23): Mayo-Agosto, 2025 | DOI:10.33936/ revbasdelaciencia.v10i2.7544


https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
revista.bdlaciencia@utm.edu.ec

	Introduction
	Mathematical Foundations
	Analytical solution to the Dirichlet problem for Poisson equation in half lens

	Discrete Formulation
	Domain Discretization 
	Symbolic solution to the problem
	Integral evaluation

	Numerical results and discussion
	Problem 1

	Conclusions
	Referencias
	Contribution of the authors

