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Resumen

Este trabajo presenta una solución aproximada del problema de Dirichlet para
la ecuación de Poisson en dos dimensiones, en un dominio con geometría de
medio lente. A partir de la función de Green específica para este dominio, se
obtuvo una solución particular basada en la representación integral del problema.A
continuación, se implementó un enfoque numérico enMATLAB para evaluar dicha
representación integral. Los resultados numéricos presentados en tablas y gráficos,
demuestran el rendimiento del método con métricas del tiempo computacional.
Esta solución representa un primer acercamiento a próximas implementaciones
numéricas en métodos rápidos como Transformada Rápida de Fourier.

Palabras clave: Problema de frontera de Dirichlet, medio lente, ecuación de
Poisson, aproximación numérica.

Abstract

This work presents an approximate solution to the Dirichlet problem for the
two dimensional Poisson equation in a half lens domain. Based on the Green’s
function specific to this domain, a particular solution was derived obtaining the
integral representation of the problem. Subsequently, a numerical approach was
implemented in MATLAB to evaluate this integral representation. The numerical
results, presented in tables and plots, demonstrate the method’s performance
using metrics such as execution time. This solution represents a first step toward
future numerical implementations using fast algorithms, including the Fast Fourier
Transform.

Keywords: Dirichlet boundary value problem, half lens domain, Poisson’s
equation, numerical approximation.

Resumo

Este trabalho apresenta uma solução aproximada para o problema de Dirichlet
da equação de Poisson em duas dimensões, em um domínio com geometria
de meia lente. A partir da função de Green específica para esse domínio, foi
obtida uma solução particular baseada na representação integral do problema. Em
seguida, foi implementada uma abordagem numérica no MATLAB para avaliar
essa representação integral. Os resultados numéricos, apresentados em tabelas e
gráficos, demonstram o desempenho do método com métricas como o tempo de
execução. Esta solução representa um primeiro passo para futuras implementações
numéricas com algoritmos rápidos, como a Transformada Rápida de Fourier.

Palavras chave: Problema de fronteira de Dirichlet, meia lente, equação de
Poisson, aproximação numérica.
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1. Introduction

The Poisson equation plays an important role in analyzing physical problems acrossmultiple fields.Although exact and approximate

solutions exist for simple geometries like rectangles and disks, solving it in more complex domains such as half lens, remains

especially challenging.

Analytical solutions to the Dirichlet problem for the Poisson equation have also been the subject of extensive research in a variety

of domains, including the circular ring, infinite horizontal strip of width π, cracked half-plane, doubly connected domains,

and lens shaped domain (Cedeño & Vanegas, 2022; Taghizadeh & Mohammadi, 2017; Vaitsiakhovich, 2008; Velez Cantos &

Vanegas Espinoza, 2022; Vergara Ibarra & Vanegas Espinoza, 2022). These solutions are typically derived by constructing an

appropriate Green’s function, which is then employed to obtain the solution via an integral representation.

Moreover, approximated solutions to Dirichlet problems for the Poisson equation in lens-like domains are crucial for progress

in applied optics, modeling, and the predictive study of light behavior in complex cosmological contexts (Mandelbaum, 2018),

as well as in metamaterials research aimed at improving performance in applications like solar photovoltaic systems (Memarian

& Eleftheriades, 2013).

In addition, efficient and accurate computation of solutions using Green’s function for Poisson equation has been applied in

rectangular waveguides and acoustic flows taking advantage of MATLAB’s computational capabilities to obtain numerical

solutions to complex partial differential equations (Berger & Lasher, 1958; Cogollos y col., 2009; Harwood & Dupère, 2012;

Shior y col., 2024).

This paper deals with the Dirichlet boundary value problem for the Poisson equation as the form:

wzz = f in Ω, w = γ on ∂Ω, γ(m− r) = γ(1) = 0, (1)

for f ∈ L1(Ω;C) ∩ C(Ω;C), γ ∈ C(∂Ω;C) and w is the solution in the space C2(Ω;C) ∩ C(Ω;C).

As for the lens domain∆ (Begehr &Vaitekhovich, 2014), this can be constructed by∆ = D∩Dm(r), whereD = {z : |z| < 1}
denotes the unit disk andDm(r) = {z : |z−m| < r} represents a disk centered atm with radius r, satisfying 0 < r < 1 < m,

and r2 + 1 = m2. Consequently, the half lens Ω is defined by Ω = {z ∈ ∆ : Im z > 0} which is depicted in Figure 1.

Note that the domain Ω has three distinct boundaries defined by z ∈ (m − r, 1), that is, z = z̄. For z ∈ ∂ΩD, that is, zz̄ = 1
and z ∈ ∂ΩDm , that is, |z −m| = r.

Figura 1. The half lens Ω.
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Dirichlet problems for the Poisson equation represent a significant class of elliptic partial differential equations problems that

have been extensively studied. Traditionally, solving the Dirichlet boundary value problems for the Poisson equation relies on

the use of integral representation equation involving Green’s functions.

2. Mathematical Foundations

2.1. Analytical solution to the Dirichlet problem for Poisson equation in half lens

Teorema 2.1. The Dirichlet problem

ωzz = f in Ω, ω = γ on ∂Ω, γ(m− r) = γ(1) = 0, (2)

has a unique solution, given specified functions f ∈ C(Ω,C) and γ ∈ C(∂Ω,C). The solution is explicitly provided by

ω(z) =
1

2πi

∫ 1

m−r
γ(t)

[
z − z̄

|t− z|2
− z − z̄

|zt− 1|2
(3)

+
r2(z − z̄)

|t(1−mz)− (m− z)|2
− r2(z − z̄)

|t(m− z)− (1−mz)|2

]
dt

+
1

2πi

∫
∂ΩD

γ(ζ)

[
1− |z|2

|ζ − z|2
− 1− |z|2

|ζ̄ − z|2

− r2(1− |z|2)
|ζ(1−mz)− (m− z)|2

+
r2(1− |z|2)

|ζ̄(1−mz)− (m− z)|2

]
dζ

ζ

+
1

2πi

∫
∂ΩDm

γ(ζ)

[
r2 − |z −m|2

|ζ − z|2
− r2 − |z −m|2

|ζ̄ − z|2
+

r2|ζ −m|2

|ζ −m|2

]
dζ

ζ −m

− 1

π

∫
Ω

f(ζ)G1(z, ζ)dζdη,

where G1(z, ζ) is the harmonic Green function for the half lens Ω given by:

log

∣∣∣∣ (ζ̄ − z)(1− zζ̄)(ζ̄(1−mz)− (m− z))(ζ̄(m− z)− (1−mz))

(ζ − z)(1− zζ)(ζ(1−mz)− (m− z))(ζ(m− z)− (1−mz))

∣∣∣∣2 . (4)

For z ∈ (m− r, 1), that is, z = z̄, implies that

∂vz
G1(z, ζ) = −i(∂z − ∂z̄)G1(z, ζ) (5)

= 4Im

[
1

ζ − z
+

ζ

1− zζ
+

mζ − 1

ζ(1−mz)(m− z)
+

ζ −m

ζ(m− z)− (1−mz)

]
,

for z ∈ ∂ΩD, that is, zz̄ = 1, it follows that

∂vzG1(z, ζ) = (z∂z + z̄∂z̄)G1(z, ζ) (6)

= 4Re

[
z

ζ − z
+

1

1− zζ
+

z(ζ −m)

ζ(m− z)− (1−mz)
+

(m− ζ)

ζ(mz − 1)− (z −m)

]
,

and for z ∈ ∂ΩDm , that is, |z −m| = r, thus

∂vzG1(z, ζ) =

((
z −m

r

)
∂z +

(
z̄ −m

r

)
∂z̄

)
G1(z, ζ) (7)

=
1

r
4Re

[
z −m

ζ − z
+

ζ(z −m)

1− zζ
+

ζr2

ζ(mz − 1)− (z −m)
+

r2

ζ(m− z)− (1−mz)

]
.
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Given a specific f and γ, a particular solution can be obtained using the integral representation in Equation (3) to evaluate

numerical results against an exact solution. Possible singularities arise when any of the following terms in the denominator of

the Green function in Equation (4) becomes zero:

1. (ζ − z):

• Singular if ζ = z.

2. (1− zζ):

• Singular if zζ = 1, or equivalently ζ = 1
z .

3. (ζ(1−mz)− (m− z)):

• Singular if:

ζ =
m− z

1−mz
.

4. (ζ(m− z)− (1−mz)):

• Singular if:

ζ =
1−mz

m− z
.

These singularities may influence the evaluation depending on the location of z. When z lies within the domain, singularities 1

and 2 may arise, whereas on the boundary, singularities 3 and 4 may occur. These singular points must be avoided during the

numerical evaluation of the method.

Proof. The proof of the theorem is by similar manner as in (Taghizadeh & Mohammadi, 2017).

3. Discrete Formulation

Figura 2. Discretization of the half lens Ω withM = 10, N = 72, R = 1, r = 0,8 andm = 1,28.
ñ

To numerically solve the Dirichlet boundary value problem for the two dimensional Poisson equation in a half lens domain, the

domain is first discretized into a mesh of collocation points. A symbolic solution is then computed for a particular problem. The

numerical approximation is obtained by evaluating the integral representation derived from the associated Green’s function, as

presented in the analytical work of Taghizadeh y Mohammadi (2017). At each collocation point, the integrals over the domain

are approximated using numerical quadrature through MATLAB’s integral2 function, while boundary integrals are evaluated
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using the integral function with waypoints option to trace the complex contour.

The discretized integral values are assembled into a solution vector, denoted by ω̂, which contains approximations to the solution
at each collocation point. This formulation avoids the need to solve a large linear system, as the integral is evaluated directly at

each point.

3.1. Domain Discretization

A half lens domain is defined as a mesh of collocation points formed by the points in the interception of the unit disk and a

disk centered at m with radius r satisfying 0 < r < 1 < m, r2 + 1 = m2 and z ∈ ∆ : Im z > 0 as illustrated in Figure 2.
Considering the discretization of both disk using same values N ×M lattice points with N points in the angular direction and

M distinct points in the radial direction, need not to be equidistant.

3.2. Symbolic solution to the problem

Computer algebra system Mathematica was used to implement Algorithm 1 and obtain a symbolic solution to the Dirichlet

problem.The script defines theGreen’s function for the half lens domain, following the formulation by Taghizadeh yMohammadi

(2017), and computes its normal derivative symbolically using the D function. Symbolic integrals are evaluated using the

Integrate function, and the resulting expression is simplified for analytical clarity with the Simplify command.

Algorithm 1 Symbolic solution of the Dirichlet problem for the Poisson equation in a half lens domain

1: Define the boundary function γ(t) . Boundary condition on the half lens
2: Define the source function f(ζ) . Right-hand side of the Poisson equation
3: Define the Green’s function G1(z, ζ)
4: Compute the integral over the interval [m− r, 1]:

Integral1← 1
2πi

∫ 1
m−r

γ(t)

(
(z−z̄)

|t−z|2
− (z−z̄)

|tz−1|2
+

r2(z−z̄)

|t(1−mz)−(m−z)|2
− r2(z−z̄)

|t(m−z)−(1−mz)|2

)
dt

5: Compute the integral over the boundary of the unit disk ΩD :

Integral2← 1
2πi

∫
∂ΩD

γ(ζ)
ζ

(
(1−|z|2)

|1−ζ̄z|2
− (1−|z|2)

|ζ−z|2
− r2(1−|z|2)

|ζ̄(1−mz)−(m−z)|2
+

r2(1−|z|2)

|ζ(1−mz)−(m−z)|2

)
dζ

6: Compute the integral over the boundary of the smaller domain ΩDm :

Integral3← 1
2πi

∫
∂ΩDm

γ(ζ)
ζ−m

(
r2|z−m|2

|ζ−z|2
− r2|z−m|2

|1−zζ|2
+

r2|z−m|2

|ζ̄(1−mz)−(m−z)|2
− r2|z−m|2

|ζ(1−mz)−(m−z)|2

)
dζ

7: Compute the domain integral with Green’s function over the half lens domain Ω:
Integral4← − 1

π

∫∫
Ω
f(ζ)G1(z, ζ) dζ dη

8: Combine the contributions to define the solution ω(z):
ω̂(z)← Integral1+ Integral2+ Integral3+ Integral4

This symbolic solution ω̂(z) provides an integral representation function which can serve for numerical evaluation.

3.3. Integral evaluation

According toHarwood yDupère (2012), when employing the integral equation formulation, one generally requires a fundamental

solution to the governing differential equation to construct the overall solution. This fundamental solution also satisfies the

boundary conditions, in which case it is referred to as a Green’s function. Once available, as demonstrated in the work of

Taghizadeh yMohammadi (2017), it enables the solution of the problem via its integral representation, which is then be evaluated

numerically at each collocation point in the domain and along the boundaries.

The numerical integration scheme used to handle the radial direction in the domain is numerical quadrature through MATLAB’s

functions (Shampine, 2008a, 2008b).

Furthermore,MATLAB’s native functions, designed for real-valued integrals, requiremeticulous handling of complex integrands,

typically by separating real and imaginary components, which amplifies computational cost. In this type of integrals challenges

arise in managing the high-dimensionality and avoid singularities, especially if the integrand is coupled with multiple complex

conjugate terms and absolute values.
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4. Numerical results and discussion

In this section, we present numerical experiments computed using Matlab R2022b on a 64-bit Apple M1 chip with 8 GB of

RAM, running macOS version 12.3.1.

Some parameters remains constant across all experiments such as: R = 1,0, r = 0,8, m =
√
1 + r2, tolerance parameter was

set to 1e−3, indicating that points within 0,01 units of the boundary are considered boundary points (red) as shown in Figure 3.
Other parameters correspond to the half lens domain discretization, refining mesh in angular direction (N ) and radial direction

(M ).

Note that, when solving the problem, different values ofN andM were used. The values considered include 64, 128, 256, 1024

and various combinations of these values were analyzed.

-1 -0.5 0 0.5 1 1.5 2

Re(z)

-0.5

0

0.5

1

1.5

Im
(z

)

(a)

-1 -0.5 0 0.5 1 1.5 2

Re(z)

-0.5

0

0.5

1

1.5

Im
(z

)

(b)

Figura 3. a) Discretization of the half lens without points on the boundary corresponding to the disk with radius r due to the
absence of tolerance verification. b) Discretization with tolerance verification using a value of 1e − 3, including points on all
the domain boundary.

Test were conducted in the domain discretizationwithN = 64,M = 128 providing a starting reference of the domain refinement
process, which improve in a dense and consistent distribution of collocation points along the curved boundary and within the

domainwith parametersN = 1024,M = 1024. The concentration of points near the curved boundary is particularly noteworthy,
as illustrated in Figure 4.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Re(z)

0.1

0.2

0.3

0.4

0.5

0.6

Im
(z

)

(a) (b)

Figura 4. a) Discretization of the half lens parametrized with N = 64, M = 128 b) Refined domain discretization of the half
lens parametrized with N = 1024,M = 1024

Using collocation points is efficient in the half lens, as they adapt well to the curvature and align closely with the boundary.

This approach is advantageous for ensuring that numerical solutions to partial differential equations are accurate in regions of

geometric complexity.
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4.1. Problem 1

Consider the Dirichlet problem for the Poisson equation:

ωzz = ez en Ω, (8)

ω = z2 en ∂Ω,

Algorithm 1 provides the symbolic calculation of the solution to Problem 1. To optimize computation time of this algorithm,

it was performed on a high-performance computer, specifically an Alienware M16 R2 equipped with an Intel Core Ultra 9

processor and 64 GB of RAM.

The particular solution obtained is as follows:

w(z) = − 1

2π
i

∫ 1

m−r

2ζ2 d
dζ

(
(z−ζ̄)(−1+m+mz−ζ̄)(m−z+mz−ζ̄)(−1+zζ̄)
(z−ζ)(−1+m+mz−ζ)(m−z+mz−ζ)(−1+zζ)

)
(z − ζ)2(−1 +m+mz − ζ)2(z −m(1 + z) + ζ)2(−1 + zζ)2

×
[
z(−1 +m+mz − ζ)− ζ̄(z − ζ̄)(m− z +mz − ζ̄)(−1 + zζ̄)

+ (−1 +m+mz − ζ̄)(m− z +mz − ζ̄)(−1 + zζ̄)

+ (−1 +m+mz − ζ̄)(m− z +mz − ζ̄)(−1 + zζ̄)

+ (−1 +m+mz − ζ̄)(m− z +mz − ζ̄)(−1 + zζ̄)

+ z(z − ζ)(−1 +m+mz − ζ)(m− z +mz − ζ)(−1 + zζ)

× (z − ζ̄)(−1 +m+mz − ζ̄)(m− z +mz − ζ̄)

× d

dζ
ζ̄

+ (−1 +m+mz − ζ)(−z + ζ)(z −m(1 + z) + ζ)(1− zζ)

× (−1 +m+mz − ζ̄)(−z + ζ̄)(1− zζ̄)
d

dζ
ζ̄

− (z − ζ)(−1 +m+mz − ζ)(m− z +mz − ζ)(−1 + zζ)

× (z − ζ̄)(m− z +mz − ζ̄)(−1 + zζ̄)
d

dζ
ζ̄

]
dζ. (9)

This function obtained via Mathematica is an integral representation of the solution to the Equation 8. The integral is evaluated

pointwise using MATLAB’s integral function, allowing the numerical computation of ω̂ on domain (z) and boundary points
(ζ). The integration limits are [m− r, 1], in this case r = 0,8, m = 1,2 , thenm− r = 0,48.

N / M 64 128 256 512 1024

64 0.94 s 1.10 s 1.71 s 2.25 s 3.92 s

128 1.13 s 1.54 s 3.08 s 3.94 s 10.43 s

256 1.83 s 2.72 s 5.64 s 8.02 s 20.91 s

512 3.23 s 5.40 s 11.47 s 17.81 s 41.48 s

1024 5.76 s 10.97 s 17.07 s 40.01 s 68.17 s

Tabla 1. Execution times in seconds for various values of N andM

Execution times are presented in Table 1 for different combinations of the radial direction M and angular direction N in the

evaluation of integral representation in Equation 9 over a half lens domain. From a computational perspective, the cost increases

monotonically withM and N , as expected due to the increased number of evaluation points.
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Notably, the time growth appears to be roughly quadratic in terms of grid size, aligning with the fact that a finer discretization

exponentially increases the number of integral evaluations. Various experiments demonstrate that fixing M and varying N
enhances the visualization of the domain, as the angular distribution of points provides greater detail along the curved boundary

of the lens-shaped region as Figure 5 sugest for the imaginary part of the solution.

Therefore, the results support the strategy of refiningN while keepingM moderate to achieve good results between computational

cost and visual fidelity.

(a) (b)

Figura 5. a) Imaginary part of the solution for the parametrized domain with M= 128 and N=512 b) Imaginary part of the

solution for the parametrized domain with M= 512 and N=128

To visualize the results, the real part and imaginary part of the solution were generated as shown in Figure 6. Each plot displays

the function’s values at domain and boundary points using color coded scatter plots over the complex plane. One can verify

the smoothness of the solution, its behavior near the boundary, and the overall effectiveness of the integral representation in

capturing the properties within the domain.

(a) (b)

Figura 6. a) Imaginary part of the solution for the parametrized domain with M= 1024 and N=1024 b) maginary part of the

solution for the parametrized domain with M= 1024 and N= 1024

Figure 6 shows plots computed over a parametrized half lens domain with parametersM = 1024 andN = 1024. The structure
and smooth variation of both parts observed regularity and lack of discontinuities or singularities. Moreover, the function appears

to respect boundary conditions regularly.

The results show no signs of numerical instability, with imaginary and real parts exhibiting continuous gradients and physically

plausible behavior under the constraints of the problem. The symmetry and boundary conformity of the plots further affirm the

reliability of the implementation.
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NUMERICALAPPROXIMATION TO THE DIRICHLET PROBLEM FOR THE POISSON EQUATION IN HALF LENS

DOMAIN

5. Conclusions

A particular solution based on the Green’s function and its integral representation is employed in Mathematica to obtain a

symbolic formulation for the Dirichlet problem associated with the Poisson equation on a half lens domain. This representation

serves as the foundation for implementing a numerical approximation using Matlab integral functions.

The discretization of the domain and its boundary is governed by two parameters, N and M , corresponding to the angular

and radial distribution of collocation points, respectively. Numerical experiments and visualizations indicate that maintaining a

moderate value forM while refining N yields a favorable balance between computational efficiency and solution accuracy.

Timing results confirm that increased resolution significantly impacts computational time; however, such refinement is essential

to capturing the fine structure of the solution. In experiments, setting N = M = 1024 offers a good approximation, beyond
additional refinement that yields marginal improvement. The computed solution is smooth, visually coherent and consistent.

Futureworkmay involve implementing a fast algorithm to compare to traditional numericalmethods and to improve computational

efficiency.
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