
Revista de la Facultad de Ciencias Básicas
Bases de la Ciencia
NUMERICAL APPROXIMATION TO THE DIRICHLET PROBLEM FOR THE POISSON EQUATION IN HALF LENS
DOMAIN
5. Conclusions
A particular solution based on the Green’s function and its integral representation is employed in Mathematica to obtain a
symbolic formulation for the Dirichlet problem associated with the Poisson equation on a half lens domain. This representation
serves as the foundation for implementing a numerical approximation using Matlab integral functions.
The discretization of the domain and its boundary is governed by two parameters, N and M, corresponding to the angular
and radial distribution of collocation points, respectively. Numerical experiments and visualizations indicate that maintaining a
moderate value for M while refining N yields a favorable balance between computational efficiency and solution accuracy.
Timing results confirm that increased resolution significantly impacts computational time; however, such refinement is essential
to capturing the fine structure of the solution. In experiments, setting N = M = 1024 offers a good approximation, beyond
additional refinement that yields marginal improvement. The computed solution is smooth, visually coherent and consistent.
Future work may involve implementing a fast algorithm to compare to traditional numerical methods and to improve computational
efficiency.
6. Referencias
Begehr, H. & Vaitekhovich, T. (2014). Schwarz problem in lens and lune. Complex Variables and Elliptic Equations, 59(1),
76-84.
Berger, J. M. & Lasher, G. J. (1958). The use of discrete Green’s functions in the numerical solution of Poisson’s equation.
Illinois Journal of Mathematics, 2(4A).
Cedeño, R. & Vanegas, C. (2022). Función de Green vía mapeo conforme para el semiplano superior agrietado. Matematica-Revista
tecnológica ESPOL, 20.
Cogollos, S., Taroncher, M. & Boria, V. E. (2009). Efficient and accurate computation of Green’s function for the Poisson
equation in rectangular waveguides. Radio Science, 44(3).
Harwood,A. R. G. & Dupère, I. D. J. (2012). Numerical Evaluation of the Compact Green’s Function for the Solution of Acoustic
Flows. American Society of Mechanical Engineers.
Mandelbaum, R. (2018). Weak Lensing for Precision Cosmology.Annual Review of Astronomy and Astrophysics, 56(1), 393-433.
Memarian, M. & Eleftheriades, G. V. (2013). Light concentration using hetero-junctions of anisotropic low permittivity metamaterials.
Light: Science and Applications, 2(11), e114-e114.
Shampine, L. (2008a). Matlab program for quadrature in 2D. Applied Mathematics and Computation, 202(1), 266-274.
Shampine, L. (2008b). Vectorized adaptive quadrature in MATLAB. Journal of Computational and Applied Mathematics,
211(2), 131-140.
Shior, M., Agbata, B., Obeng-Denteh, W., Kwabi, P., Ezugorie, I., Marcos, S., Asante-Mensa, F. & Abah, E. (2024). Numerical
solution of partial differential equations using MATLAB: Applications to one-dimensional heat and wave equations.
Scientia Africana, 23(4), 243-254.
Taghizadeh, N. & Mohammadi, V. S. (2017). Dirichlet and Neumann problems for Poisson equation in half lens. Journal of
Contemporary Mathematical Analysis (Armenian Academy of Sciences), 52(2), 61-69.
Vaitsiakhovich, T. (2008). Boundary value problems for complex partial differential equations in a ring domain (Tesis doctoral).
Velez Cantos, C. & Vanegas Espinoza, C. (2022). Función de Green en una franja horizontal infinita de amplitud pi con frontera
mixta Dirichlet-Neumann usando el método parqueting-reflections. Matemática ESPOL - FCNM Journal, 20.
Vergara Ibarra, J. & Vanegas Espinoza, C. (2022). El Kernel de Poisson para un dominio doblemente conexo. Matemática
ESPOL - FCNM Journal, 20.
revista.bdlaciencia@utm.edu.ec 22
ISNN 2588-0764 Vol. 10, Núm. 2 (14-23): Mayo-Agosto, 2025 DOI:10.33936/ revbasdelaciencia.v10i2.7544