Efecto de los Aniones H
2
PO
4
-
, CH
3
COO-, SO
4
2-
Y NO
3
-
en la Remoción De Cu por ll Mineral Hematita
Instituto de Ciencias Básicas. Universidad Técnica de Manabí. Portoviejo-Ecuador
73
Axe, K.; Persson, P. (2001).
“Time-dependent surface speciation of oxalate at the water boehmite
(c-
AlOOH) interface: implications for dissolution”, Geochim. Cosmochim, 65, 4481–4492.
Bajpai, S.; Jain, A. (2010).
“Removal of copper(II) from aqueous solution using spent tea leaves
(STL) as a potential sorbent”, Water SA, 36(3), 221-228
Beattie, D. Chapelet, J.; Grafe, M.; Skinner, W.; Smith, E., (2008), “In situ ATR FTIR studies of SO4
adsorption on goethi
te in the presence of copper ions”, Environ. Sci. Technol, 42, 9191–9196.
Boves, M., (2009). Identificación y optimización de los parámetros y procesos involucrados en la
desalinización y remoción de metales pesados con arenas venezolanas, Tesis Doctoral,
Universidad del Zulia, Venezuela, pp 5-7
Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M.;
Scheckel, K. (2014). “Remediation of heavy metal(loid)s contaminated soils – To mobilize or to
immobilize?”. Journal of Hazardous Materials. 266, 15 February, 141-166.
Cámara, C.; Fernández, P.; Martín, A.; Pérez, C.; Vidal, M. (2004).
“toma y tratamiento de muestras”,
Madrid, España, Editorial Síntesis, pp 48, 53
Chakravarty, P.; Sarma, N.; Sarma, H. (2010).
“Removal of lead(II) from aqueous solution using
heartwood of Areca catechu powder”, Desalination, 256, 16–21.
Chowdhur, Z.; Zain, S.; Rashid, A. (2011).
“Equilibrium Isotherm Modeling, Kinetics and
Thermodynamics Study for Removal of Lead from Waste Wate
r”, E-Journal of Chemistry, 8(1),
333-339.
Collins, C.; Ragnarsdottir, K.; Sherman, D. (1999).
“Effect of inorganic and organic ligands on the
mechanism of cadmium sorption to goethite”, Geochim. Cosmochim. 63, 2989-3002.
Dimirkou, A.; Ioannou, A., Doula, M. (2002). " Preparation, characterization and sorption properties
for phosphates of hematite, bentonite and bentonite-
hematite systems”, Advances in Colloid
and Interface Science, 97, 37-61.
Dobson, K.; McQuillan, A.. (1999).
“In situ infrared spectroscopic analysis of the adsorption of
aliphatic carboxylic acids to TiO2, ZrO2, Al2O3, and Ta2O5 from aqueous solutions”,
Spectrochim., Mol. Biomol. Spectrosc, 55, 1395
–1405.
Duckworth, O.; Martin, S. (2001).
“Surface complexation and dissolution of hematite by C1-C6
dicarboxylic acids at pH = 5.0”, Geochim. Cosmochim., 65, 4289–4301.
Faria, R. (2014). Efecto del anión acetato en la remoción de Pb por un sorbente de bajo costo,
Trabajo Especial de Grado, Universidad del Zulia, Venezuela, pp 51-52
Harvey, D. (2002). Química analítica moderna, Madrid, España, McGraw-Hill, pp 30, 43, 54
Hiemstra, T.; Van Riemsdijk, W. (1996).
“A surface structural approach to ion adsorption: The charge
distribution (CD) model”, J.Colloid Interface Sci, 179, 488–508.
Ho, Y.; Wase, D.; Forster, C. (1994).
“The adsorption of divalent copper ions from aqueous solution
by sphagnum moss peat. Process Saf”, Environ. Prot, 72,185-194
Huang, Y.; Hsueh, C.; Cheng, H.; Su, L.; Chen, C. (2007).
“Thermodynamics and kinetics of
adsorption of Cu(
II) onto waste iron oxide”, J. Hazard Mater, 144(1-2), 406-411
Hug, S.; Bahnemann, D. (2006).
“Infrared spectra of oxalate, malonate and succinate adsorbed on
the aqueous surface of rutile, anatase and lepidocrocite measured with in situ ATR-
FTIR”, J.
Electronic Spec. Related Phenomena, 150, 208
–219.