Lic. Yulia Almary Wilbert Rangel et al.
74
Johnson S.; Brown, J.; Healy T.; Scales, P. (2005).
“Adsorption of organic matter at mineral/water
interfaces. 6. Effects of inner-sphere versus outer-
sphere adsorption on colloidal stability”,
Langmuir, 21, 6356
–6365.
Jubb, A.; Verreault, D.; Posner, R.; Criscenti, L.; Allen, H. (2013).
”Sulfate adsorption at the buried
hematite/solution interface investigated using total internal reflection (TIR)-Raman
spectroscopy”, Journal of Colloid and Interface Science, 400, 140-146.
Komárek, M.; Vaněk, A.; Ettler, V. (2013). “Chemical stabilization of metals and arsenic in
contaminated soils using oxides
– A review”, Environmental Pollution, 172, 9-22.
Kubicki, J.; Schroeter, L.; Itoh, M.; Nguyen, B.; Apitz, S. (1999).
“Attenuated total reflectance Fourier-
transform infrared spectroscopy of carboxylic acids adsorbed onto mineral surfaces”, Geochim.
Cosmochim., 63, 2709
–2725.
Li, W.; Zhang, S.; Jiang, W.; Shan, X. (2006).
“Effect of phosphate on the adsorption of Cu and Cd
on natural hematite”, Chemosphere, 63, 1235–1241.
Li, W.; Zhang, S.; Shan, X. (2007).
“Surface modification of goethite by phosphate for enhancement
of Cu and Cd adsorption Colloids and Surfaces”, A: Physicochem. Eng. Aspects, 293, 13–19.
Liu, H.; Peng, S.; Shu. L; Chen, T.; Bao, T.; Frost, R. (2013).
“ Magnetic zeolite NaA:
Synthesis,characterization based on metakaolin and its application for the removal of Cu 2+, Pb
2+”, Chemosphere, 91, 1539–1546.
López, K. (2014). Efecto de especies fosfato sobre la remoción de plomo y níquel por un sorbente
de bajo costo, Trabajo Especial de Grado, Universidad del Zulia, Venezuela, pp 1-61.
López, K.; Montilla, B.; Faría, R.; Colina, M.; Boves, M. (2015).
“Efecto de especies fosfato en la
remoción de plomo por una g
oethita natural”, Ciencia, 23(2), 102-113.
Mahar, A.; Wang, P.; Li, R.; Zhang, Z. (2015).
“Immobilization of lead and cadmium in contaminated
soil using amendments: a review”, Pedosphere, 25, (4), 555-568.
Méndez, W. (2017).
“Efecto del anión sulfato en la remoción de Ni y Cd utilizando como sorbente
de bajo costo el mineral hematita”, Trabajo Especial de Grado en proceso de culminación,
Universidad del Zulia, Venezuela, pp 11.
Montes de Oca, E. (2015). Efecto del ion acetate en la remoción de Pb y Ni utilizando como sorbente
el mineral hematita, Trabajo Especial de Grado, Universidad del Zulia, Venezuela, pp 13.
Mustafa, S.; Khan, S.; Zaman, M. (2010).
“Effect of Ni2+ ion doping on the physical characteristics
and chromate adsorption behavior of goethite”, Water Research, 44, 918-926.
Norén, K., Persson, P. (2007).
“Adsorption of monocarboxylates at the water/goethite interface: The
importance of hydrogen bonding”, Geochim. Cosmochim., 71, 5717-5730.
Pajany, Y.; Hurel, C.; Marmier, N.; Roméo, M. (2009).
“Arsenic adsorption onto hematite and
goethite”, C. R. Chimie, 12, 876-881.
Peacock, C.; Sherman, D., (2004).
“Copper(II) sorption onto goethite, hematite and lepidocrocite: A
surface complexation model based on ab initio molecular geometries and EXAFS
sp
ectroscopy”, Geochimica et Cosmochimica, 68(12), 2623–2637.
Peak, D.; Ford, R.; Sparks, D., (1999).
“An in situ ATR-FTIR investigation of sulfate bonding
mechanisms on goethite”, J. Colloid Interf. Sci., 218, 289–299.