Comportamiento de agregación de noveles surfactantes de par iónico

Aggregation behavior of novel ion pair surfactants

  • Bélgica Bravo Universidad del Zulia
  • Gerson Chávez Universidad del Zulia
  • Nelson Márquez Universidad del Zulia
  • Nacarid Delgado Universidad del Zulia
  • Ana Cáceres Universidad del Zulia
  • Milangel Luzardo Universidad del Zulia
  • Iran Parra Universidad del Zulia
  • Mariana Collins Universidad del Zulia
  • Azeneth Borja Universidad del Zulia

Resumen

Los ácidos alquilcarboxílicos pueden dar origen a la formación de una especie iónica con características anfifílicas que disminuye la tensión superficial de un sistema agua/aire. El tipo de contraión de estas especies juega un papel fundamental en las propiedades superficiales del compuesto. Se preparó una novedosa clase de surfactantes de par iónico (SPI) por neutralización de cantidades equimolares del ácido carboxílico con una base de tipo ciclohexilamina (cHACn) bajo condiciones suaves de reacción. Se estudió el comportamiento de agregación por tensión superficial. Los compuestos obtenidos disminuyeron la tensión superficial presentando baja concentración micelar crítica (CMC) y por tanto una mayor actividad superficial. La CMC de todos los compuestos estudiados disminuyó con la longitud de la cadena alquílica aniónica (n). 


Palabras clave: ácidos alquilcarboxílicos, surfactantes de par iónico, comportamiento de agregación, tensión superficial.


ABSTRACT


The alkylcarboxylic acids can give origin to the formation of ionic species with amphiphilic characteristics that decreases the surface tension of a water/air system. The type of counterion of these species plays a fundamental paper in the surface properties of the compound. Novel class ion pair surfactants (IPS) were prepared by neutralization of equimolar amounts of carboxylic acid with a base of type cyclohexylamine (cHACn) though mild reaction conditions. The aggregation behavior through surface tension was studied. The compounds obtained reduced the surface tension presenting low critical micelar concentration (CMC) and therefore a greater surface activity. The CMC of all compounds studied decreased with the length of the anionic alkyl chain (n). 


Key words: Alkylcarboxylic acids, ion pair surfactant, aggregation behavior, surface tension.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

Citas

Anouti M., Jones J., Boisset A., Jacquemin J., Caillon-Caravanier M., Lemordant D. (2009). Aggregation behavior in water of new imidazolium and pyrrolidinium alkycarboxylates protic ionic liquids. Journal of Colloid and Interface Science, 340 (1), 104-111
Asadov Z., Rahimov R., Mammadova K., Ahmadova G., Ahmadbayova S. (2015). Effect of organic counterions on the propertied of n-lauryl diisopropanolamine surfactants. Journal of Dispersion Science and Technology, 36 (7), 1022-1028.
Bordes R., Tropsch J., Holmbergm K. (2009). Counterion specificity of surfactants based on dicarboxylic amino acids. Journal of Colloid and Interface Science, 338, 529-536,
Bravo B., Chávez G., Gamarro C., Moreno A., Márquez N., Delgado N., Cáceres A., Luzardo M., Parra I. (2015). Physico-chemical characterization of new amphiphilic ion pairs based on alkylcarboxilic acids. Biointerface Research in Applied Chemistry, 5(1), 926-930
Caili D., Mingyong D., Yifei L., Shilu W., Jianhui Z., Ang C., Dongxu P., Mingwei Z. (2014). Aggregation behavior of long-chain piperidinium ionic liquids in ethylammoniumnitrate. Molecules. 19 (2), 20157-20169.
Chávez G., Arenas G., Parra I., Luzardo M., Bravo B., Ysambertt F., Márquez N. (2009). Estudio de las variables fisicoquímicas en el proceso de micelización de mezclas de surfactantes no-iónicos polietoxilados en la interfase agua/aire. Parte I: efecto de la salinidad. CIENCIA 17(3), 235-244
Danov K., Kralchevsky P., Ananthapadmanabhan K. (2013). Micelle-monomer equilibria in solutions of ionic surfactants and in ionic-nonionic mixtures: A generalized phase separation model. Advances in Colloid Interface Sci.206, 17-45
Douliez J., Gaillard C. (2014). Self-assembly of fatty acids: from foams to protocell vesicles. New Journal of Chemistry, 38 (11), 5142-5148.
Domanska U., Skiba K., Zawadzki M., Paduszynski K., Krolikowski M. (2013).Synthesis, physical, and thermodynamic properties of 1-alkyl-cyanopyridinium bis{(trifluoromethyl)sulfonyl}imide ionic liquids. The Journal of Chemical Thermodynamics, 56, 153–161
Fameau A., Zembb T. (2014). Self-assembly of fatty acids in the presence of amines and cationic components. Advances in Colloid and Interface Science, 207 (1), 43-64.
Freitas D., Franc I., Félix A., Martinsa J., Aparecida M., Melob V., Barros L. (2013). Kinetic study of biosurfactant production by Bacillus subtilis LAMI005 grown in clarified cashew apple juice. Colloids and Surfaces B Biointerfaces, 101, 34-43,
Hanno I., Centini M., Anselmi C., Bibiani C. (2015). Green Cosmetic Surfactant from Rice: Characterization and Application. Cosmetics.2 (4), 322-341.
Jinglin T., Depeng M., shengyu F. (2012). Effect of headgroups on the aggregation behaviour of cationic silicone surfactants in aqueous solution. Colloids Surfaces A: Physicochem. Eng. Aspect. A. 417, 146-153,
Khan F., Siddiqui U., Khan I., Kabir D. (2012). Physicochemical study of cationic gemini surfactant butanediyl-1,4-bis (dimethyldodecylammonium bromide) with various counterions in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 394, 46-56.
Moradi T., Sohrabi B., Najafi M. (2013). Adsorption and micellar phase properties of anionic surfactant in the presence of electrolyte and oil at different temperatures. Fluid Phase Equilibria. 337, 370-378.
Mrinmoy B., Madhab D., Pabitra N., Sharmistha G., and Tarun K. (2014). Imidazolium-based ionic liquids with different fatty acid anions: phase behavior, electronic structure and ionic conductivity investigation. The Journal of Physical Chemistry, 16 (30), 16255-16263.
Ningning Li., Robert K. T., Rennie A. (2012). Adsorption of non-ionic surfactants to the sapphire/solution interface – Effects of temperature and pH. Journal of Colloid and Interface Science, 369, 287-293.
Samy S., Ismail A., Abdallah I. (2016). Surface parameters and biological activity of n-(3-(dimethyl benzyl ammonio) propyl) alkanamide chloride cationic surfactants. Journal of Surfactants and Detergents, 19 (3), 501-510.
Santana R., Fasolin L., Cunha R. (2012). Effects of a cosurfactant on the shear-dependent structures of systems composed of biocompatible ingredients. Colloids and Surfaces A, 398, 54-63.
Vlasta T.; Tea M. (2017). The review on properties of solid catanionic surfactants: Main applications and perspectives of new catanionic surfactants and compounds with catanionic assisted synthesis. Journal of Dispersion Science and Technology, 38 (5), 15-44
Wang J. and Wang H. (Eds.). (2014). Aggregation in systems of ionic liquids. In: Zhang S., Wang J., Lu X., Zhou Q. Structures and interactions of ionic liquids, structure and bonding. Springer-Verlag, Berlin Heidelberg. 151 (1), 39-77.
Wang X., Yu L., Jiao J., Zhang H., Wang R., Chen H. (2012). Aggregation behavior of COOH-functionalized imidazolium-based surface active ionic liquid in aqueous solution. Journal of Molecular Liquids, 173, 103-107
Xiu Y., Xiaoyun F., Qintang L., Xiao C., Chuanyi W. (2017). Aggregation behaviors of alkyl ether carboxylate surfactants in water. Journal of Molecular Liquids, 227 (1), 161-167.
Publicado
2018-08-31
Sección
Ciencias Químicas