Efecto de la humedad de alimentación y temperatura de extrursión sobre el contenido nutricional de un snack a base de maíz, chocho y papaO

Effect of feeding moisture and extrusion temperature on the nutritional content of a snack based on corn, lupine and potato

  • Armando Manosalvas Universidad Técnica del Norte - Ecuador
  • Richard Taimal Universidad Técnica del Norte - Ecuador
  • Elena Villacrés Universidad Técnica del Norte - Ecuador

Resumen

Los efectos de diferentes parámetros operativos de extrusión en equipos de un solo tornillo sobre los cambios nutricionales del snack fueron estudiados. Los parámetros de extrusión investigados fueron: temperatura del barril (110 – 140ºC), contenido de humedad (15% - 20%) y matriz alimentaria: maíz (Zea mays), chocho (Lupinus mutabilis Sweet) y papa (Solanum tuberosum) en proporción 80/10/10 y 70/15/15 (p/p). Los snacks que registraron mayor contenido nutricional fueron con la matriz en proporción 70/15/15 a 15% de humedad y extruida a 110°C, con valores de humedad 6.06%, proteína 18.69%, grasa 2.01%,  fibra 2.28%, cenizas 1.00% y carbohidratos 72.24%, con relación al tratamiento control, (100% maíz) que registró contenidos de humedad de 5.13%, proteína 8.32%, grasa 0.54%,  fibra 0.55%, cenizas 0.57% y carbohidratos 85.44%. Las condiciones de extrusión aplicadas en este estudio mostraron efectos significativos sobre el contenido nutricional del snack extruido obtenido. El incremento del nivel de adición/sustitución de leguminosas y tubérculos a la matriz con maíz,  mejora significativamente el contenido nutricional del producto extruido.
 
Palabras clave: extrusión, matriz alimentaria, humedad, temperatura, snack.
 
Abstract
 
The effects of different extrusion operational parameters in one screw equipments on the nutritional changes of the snack were studied. The studied extrusion parameters were:  barrel temperature (110 - 140ºC), moisture content (15% - 20%) and food matrix: corn (Zea mays), lupine (Lupinus mutabilis Sweet) and potato (Solanum tuberosum) in proportions 80/10/10 and 70/15/15 (w/w). The highest nutritional content reported was for the 70/15/15 w/w food matrix snacks at 15% of humidity and extruded at 110°C, which resulted with  18.69% of protein , 2.01% of fat,  72.24% of carbohydrates,2.28% of fiber, 1.00% of ashes and 6.06%  of moisture with respect to control snacks (100% corn) which reported a nutritional analysis of 8.32% of protein, 0.54% of fat, 85.44% of carbohydrates, 0.55% of  fiber, 0.57% of ashes and 5.13% of moisture. The extrusion conditions applied in this study showed significant effects on the extruded snack obtained. The increase of the addition/substitution level of legumes and tubers in the corn matrix, significantly improves the extruded product nutritional content. 
 
Keywords: extrusion, moisture, temperature, snack, food matrix.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

Citas

Advances in Food Extrusion Technology. (D.-W. Sun, Ed.). https://doi.org/https://doi.org/10.1017/CBO9781107415324.004
Bordoloi, R., & Ganguly, S. (2014). EXTRUSION TECHNIQUE IN FOOD PROCESSING AND A REVIEW ON ITS VARIOUS TECHNOLOGICAL PARAMETERS, 2(1), 1–3. Retrieved from http://www.indjsrt.com

Brennan, M. A., Lan, T., & Brennan, C. S. (2016). Synergistic Effects of Barley, Oat and Legume Material on Physicochemical and Glycemic Properties of Extruded Cereal Breakfast Products. Journal of Food Processing and Preservation, 40(3), 405–413. https://doi.org/10.1111/jfpp.12617
Chirinos-Arias M.C. (2015). Andean Lupin ( Lupinus mutabilis Sweet ) a plant with nutraceutical and medicinal potential, 51(1), 163–172. Retrieved from http://editorial.uan.edu.mx/BIOCIENCIAS/article/view/139

Ding, Q., Ainsworth, P., Plunkett, A., Tucker, G., & Marson, H. (2006). The effect of extrusion conditions on the functional and physical properties of wheat-based expanded snacks, 73, 142–148. https://doi.org/10.1016/j.jfoodeng.2005.01.013

Freire, V. (2014). La nueva situación epidemiológica de Ecuador. Revista Informativa - Ops/Oms Representacion Ecuador, 32, 1–100.
Ghumman, A., Kaur, A., Sing, N., Sing, B. (2016). Effect of feed moisture and extrusion temperature on potein digestibility and extrusion behavior of lentil and horsegram. LWT-Food Science and Technology, YFSTL 5314. https://doi.org/10.1016/j.lwt.2016.02.032

Guy, R. (2001). Extrusion cooking - Technologies and applications (I). England.

Ilo, S., Schoenlechner, R., & Berghofe, E. (2000). Role of lipids in the extrusion cooking processes. Grasas y Aceites, 51(1–2), 97–110. https://doi.org/10.3989/gya.2000.v51.i1-2.410
Kasprzak, M., Rzedzicki, Z., Wirkijowska, A., Zarzycki, P., Sobota, A., Sykut-Domańska, E. & Błaszczak, W. (2013). Effect of fibre-protein additions and process parameters on microstructure of corn extrudates. Journal of Cereal Science, 58(3), 488–494. https://doi.org/10.1016/j.jcs.2013.09.002

Lupano, C. E. (2013). Modificaciones de componentes de los alimentos: cambios químicos y bioquímicos por procesamiento y almacenamiento (1st ed.). Buenos Aires (Argentina): Universidad Nacional de la Plata.

Moscicki, L. (2011). Extrusion-Cooking Techniques. Weinheim, Germany.

Obradovi, V., Babi, J., & Jozinovi, A. (2014). Improvement of nutritional and functional properties of extruded food products, 53(3), 189–206.

Patil, S., and Kaur, C. (2018). Current trends in Extrusion:Development of functional Foods and Novel Ingredients. Food Science and Technology Research. 24(1), 23-34. https://doi:10.3136/fstr.24.23

Patil, S., Anne, M., Sue, B., Charles, M., & Brennan, S. (2017). Investigation of the combination of legumes and cereals in the development of extrudate snacks and its effect on physico-chemical properties and in vitro starch digestion, 56(1), 32–41.

Patil, S., Brennan, M., Mason, S., & Brennan, C. (2016). The Effects of Fortification of Legumes and Extrusion on the Protein Digestibility of Wheat Based Snack. Foods, 5(2), 26. https://doi.org/10.3390/foods5020026

Ramachandra, H. G., & Thejaswini, M. L. (2015). Extrusion Technology : A Novel Method of Food Processing. IJISET - International Journal of Innovative Science, Engineering & Technology, 2(4), 358–369.

Rehal, J., Kaur, G. J., Kaur, A., & Singh, A. (2017). Comparative Evaluation of Different Attributes of the Existing Extruded Snacks. Journal of Krishi Vigyan, 5(2), 15. https://doi.org/10.5958/2349-4433.2017.00004.6

Singh, S., Gamlath, S., & Wakeling, L. (2007). Nutritional aspects of food extrusion: A review. International Journal of Food Science and Technology, 42(8), 916–929. https://doi.org/10.1111/j.1365-2621.2006.01309.x

Steel, C. J., Gabriela, M., Leoro, V., Schmiele, M., Ferreira, R. E., & Chang, Y. K. (2012). Thermoplastic Extrusion in Food Processing. In A. El-Sonbati (Ed.), Thermoplastic Elastomers. Retrieved from http://www.intechopen.com/books/thermoplastic- elastomers/thermoplastic-extrusion-in-food-processing

Valenzuela-Lagarde, JL., et al.(2017). botanas expandidas a base de mezclas de harinas de calamar, maíz y papa: efecto de las variables del proceso sobre las propiedades fisicoquímicas. CYTA - Journal of food. 15 (1), 118-124. http://dx.doi.org/10.1080/19476337.2016.1219391

Villacrés, E., Rubio, A., Egas, L., & Gabriela, S. (2006). Usos Alternativos del Chocho. INIAP-Estación Experimental Santa Catalina.

Wang, Y., & Ryu, G. (2013). Physical properties of extruded corn grits with corn fibre by CO2 injection extrusion. Journal of Food Engineering, 116(1), 14–20. https://doi.org/10.1016/j.jfoodeng.2012.10.041
Publicado
2019-12-31
Sección
Ciencias Químicas