

Mejores Prácticas en la Implementación del Edge Computing: Un Enfoque Basado en Casos de Éxito

Best Practices in the Implementation of Edge Computing: A Case Study Approach

Autores

*Anderson Ivan Asanza Honores

(D)

☑ Darwin Geovanny Chuchuca Vacacela

(D)

™ Mariuxi Paola Zea Ordoñez

(D

▼ Tania Yesminia Contreras Alonso

(D)

Facultad de Ingeniería Civil, Universidad Técnica de Machala, Machala, Ecuador.

* Autor para correspondencia

Resumen

El Edge Computing ha emergido como una tecnología clave para transformar diversos sectores industriales, ofreciendo capacidades avanzadas de procesamiento y almacenamiento de datos cerca del punto de generación. Este estudio presenta una revisión sistemática de la literatura sobre la implementación de esta tecnología en videovigilancia, agricultura y atención médica, con el objetivo de identificar mejores prácticas a partir de casos de éxito utilizando la metodología PRISMA. Se analizaron 42 estudios publicados entre 2020 y 2024, evaluando aspectos como seguridad, interoperabilidad, eficiencia operativa y escalabilidad. Los resultados revelan un alto cumplimiento en eficiencia operativa, requisitos específicos del negocio y rendimiento de puntos finales. Sin embargo, se identificaron desafíos en seguridad, resiliencia e integración de middleware. Basados en estos hallazgos, se propone un conjunto de mejores prácticas que abordan estos aspectos críticos, incluyendo adaptabilidad e intercambio de datos. Esta propuesta busca proporcionar un marco de referencia para la implementación potencial en sectores clave, ayudando a las organizaciones a optimizar sus procesos y aprovechar los beneficios de esta innovación de manera más efectiva.

Palabras clave: Edge Computing; mejores prácticas; videovigilancia; agricultura; atención médica.

Comó citar el artículo:

Asanza Honores, A.I., Chuchuca Vacacela, D.G., Zea Ordoñez, M.P. & Contreras Alonso, T.Y. (2024). Mejores Prácticas en la Implementación del Edge Computing: Un Enfoque Basado en Casos de Éxito. Informática y Sistemas: Revista de Tecnologías de la Informática y las Comunicaciones, 8(1), pp. 70–85. DOI: https://doi.org/10.33936/isrtic.v8i2.6879

Enviado: 01/08/2024 Aceptado: 25/09/2024 Publicado: 30/09/2024

Abstract

Edge computing has emerged as a key technology for transforming various industrial sectors, offering advanced data processing and storage capabilities near the point of generation. This study presents a systematic literature review on the implementation of this technology in video surveillance, agriculture, and healthcare, aiming to identify best practices from success cases using the PRISMA methodology. We analyzed 42 studies published between 2020 and 2024, evaluating aspects such as security, interoperability, operational efficiency, and scalability. The results reveal high compliance in operational efficiency, specific business requirements, and endpoint performance. However, challenges were identified in security, resilience, and middleware integration. Based on these findings, we propose a comprehensive set of best practices addressing these critical aspects, including adaptability and data exchange. This proposal seeks to provide a reference framework for potential implementation in key sectors, helping organizations optimize their processes and leverage the benefits of this innovation more effectively. The study contributes to the growing body of knowledge on edge computing applications across diverse industries.

Keywords: Edge Computing; best practices; video surveillance; agriculture; healthcare.

Informática y Sistemas

1. Introducción

El Edge Computing emerge como un paradigma transformador en diversos sectores (Zhang et al., 2021), permitiendo el procesamiento y almacenamiento de datos cerca del punto de generación. Esta investigación se centra en su aplicación en videovigilancia, agricultura y atención médica, áreas seleccionadas por su impacto en seguridad, producción alimentaria y salud. Este enfoque promete abordar desafíos específicos en estos campos, como latencia, seguridad y eficiencia en la gestión de datos en tiempo real.

Diversos estudios han realizado revisiones sistemáticas sobre el impacto transformador del Edge Computing en distintos sectores. Por ejemplo, en su revisión sobre procesamiento de datos en tiempo real y análisis, (Oluwole Temidayo Modupe et al., 2024) destacan que "Edge Computing ha revolucionado la forma en que las organizaciones manejan los datos en tiempo real, habilitando la toma de decisiones autónoma y análisis predictivos al procesar los datos en el punto de generación". Esta revisión proporciona una visión integral sobre cómo la computación en el borde facilita la optimización operativa, mejora la seguridad y promueve la creación de valor en sectores como la atención médica, la manufactura y las ciudades inteligentes (Oluwole Temidayo Modupe et al., 2024).

En el ámbito de la atención médica, la importancia de este paradigma computacional ha sido objeto de extenso debate académico. Chen et al. (2021) menciona en su investigación que el uso de este paradigma puede reducir los retrasos en la transmisión de datos, mejorar la seguridad al evitar la transferencia de datos sensibles a través de largas distancias y optimizar el uso de los recursos computacionales distribuidos. Esto es particularmente importante en aplicaciones de telemedicina, donde la toma de decisiones en tiempo real es crucial. Asimismo, la privacidad y la seguridad de los datos se consideran aspectos críticos en los sistemas basados en Edge Computing. Según (Alzu'bi et al., 2024), quienes realizaron una revisión sistemática sobre la privacidad y seguridad en sistemas de salud inteligentes basados en Edge Computing, "el crecimiento de modelos de computación en la nube, IoT y Edge Computing presenta preocupaciones severas sobre la privacidad de los datos, especialmente en el sector salud". Los autores subrayan que aún se carece de soluciones de privacidad adecuadas para el sector, destacando la necesidad de nuevas investigaciones que aborden estos desafíos. Esta revisión identifica estrategias comunes para preservar la privacidad en las aplicaciones de salud basadas en Edge, proporcionando valiosas perspectivas para futuras investigaciones.

La aplicación de este enfoque de procesamiento de datos

resulta igualmente crucial en la agricultura. En este sector, el aprendizaje federado emerge como una técnica clave. Según Abreha et al. (2022), esta metodología "se desarrolló para abordar problemas de privacidad, costos de comunicación y legalización". Permitiendo entrenar modelos en dispositivos finales sin compartir datos locales, lo cual es especialmente relevante en el contexto agrícola, donde la protección de información sensible y la optimización de costos de comunicación son primordiales.

La videovigilancia se beneficia enormemente de esta tecnología, que facilita el procesamiento y análisis de video en tiempo real en proximidad a los puntos de captura. (Bai et al., 2020) demostraron que los sistemas de computación en el borde pueden reducir sustancialmente el tiempo de procesamiento computacional, lo cual mejora la capacidad de respuesta ante eventos críticos. Debido a la capacidad de procesamiento en el borde de la tecnología de computación en la niebla, tiene varias funcionalidades en aplicaciones inteligentes, como el sistema de atención médica inteligente como lo menciona (Alwakeel, 2021). Esta misma capacidad de procesamiento en el borde puede aplicarse en sistemas de videovigilancia para detectar y responder rápidamente a incidentes de seguridad.

Con esto, se evidencia que existe una base significativa de estudios que revisan los impactos y beneficios generales de la computación en el borde. Sin embargo, ante la ausencia de una guía integral de mejores prácticas para la implementación del Edge Computing, esta investigación busca desarrollarlas para videovigilancia, agricultura y atención médica. Mediante una revisión sistemática de literatura basada en la metodología PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses), se analizarán implementaciones existentes y proyectos piloto, utilizando las normas ISO/IEC 30161-1:2020, 30141:2018 y 21823-2:2020 relevantes como marco de referencia. Se evaluarán aspectos como seguridad, interoperabilidad, eficiencia operativa, rendimiento de los puntos finales, intercambio de datos, cumplimiento de requisitos específicos del negocio, adaptabilidad, escalabilidad, resiliencia e integración de middleware. El objetivo de este trabajo investigativo es proporcionar una propuesta que facilite la adopción y el escalamiento del Edge Computing en estas áreas críticas, abordando desafíos actuales y aprovechando su potencial transformador.

2. Materiales y Métodos

2.1 Palabras Clave y Cadenas de Búsqueda

Esta revisión sistemática de literatura se centra en tres preguntas de investigación (research question) sobre la implementación de

CC (1) (S) (E)

Edge Computing en agricultura, salud y videovigilancia:

- RQ1: ¿Cuáles son las principales barreras tecnológicas para la adopción de Edge Computing en los sectores agrícolas? Esta pregunta busca identificar y analizar las barreras tecnológicas que dificultan la adopción de Edge Computing en este sector. Comprender estas barreras es crucial para desarrollar estrategias efectivas que permitan superar los desafíos y promover la implementación de Edge Computing, mejorando así la eficiencia y competitividad en los sectores agrícolas mediante soluciones tecnológicas.
- RQ2: ¿Qué mejores prácticas pueden maximizar la seguridad en la implementación de Edge Computing en el sector salud? La finalidad de esta pregunta es investigar y definir mejores prácticas que puedan maximizar la seguridad en la implementación de Edge Computing en el sector salud. Dada la sensibilidad de los datos en este sector, es crucial garantizar la seguridad y privacidad de la información.
- RQ3: ¿Cómo puede la implementación de Edge Computing mejorar la eficiencia operativa de los sistemas de seguridad basados en cámaras de vigilancia? Esta pregunta se centra en explorar cómo la implementación de Edge Computing puede mejorar la eficiencia operativa de los sistemas de seguridad que utilizan cámaras de vigilancia. El objetivo es demostrar que la computación en el borde puede procesar datos de video en tiempo real, reduciendo la latencia y mejorando la capacidad de respuesta ante incidentes de seguridad.

Se crearon cadenas de búsqueda con palabras clave y operadores booleanos para abordar las preguntas de investigación.

- Para RQ1: (Adoption OR Implementation) AND (Edge Computing) AND (Agriculture).
- Para RQ2: (Integration) AND (Edge Computing) AND (Health).
- Para RQ3: (Operational efficiency) AND (Adoption OR Implementation) AND (Edge Computing) AND (Video surveillance).

Estas combinaciones permiten una búsqueda focalizada en bases de datos, facilitando la identificación de estudios pertinentes para cada sector y temática, y contribuyendo a una revisión sistemática robusta. El uso de preguntas de investigación específicas para guiar una revisión sistemática es una práctica común y efectiva en la literatura científica. Por ejemplo, los autores (Baktayan et al., 2024) llevaron a cabo una revisión sistemática sobre computación de borde habilitada por UAV (Unmanned Aerial Vehicles, Vehículos Aéreos No Tripulados) con el objetivo de explorar y categorizar la investigación existente en este campo emergente. Su estudio se justifica por la necesidad de comprender mejor las tendencias de investigación, los escenarios de uso, las arquitecturas propuestas, las técnicas exploradas y los desafíos abiertos en la integración de UAV y computación de borde. En su trabajo, utilizaron siete preguntas de investigación clave para estructurar su análisis, lo que les permitió proporcionar una visión comprehensiva y detallada del estado del arte y las áreas que requieren más atención en futuras investigaciones.

2.2 Criterios de Inclusión y Exclusión

Para delimitar el alcance de esta revisión sistemática, se establecieron los siguientes criterios de inclusión y exclusión:

Tabla 1. Criterios de Inclusión y Exclusión.

Criterios	Inclusión	Exclusión
Tipo de documento	Artículos	Tesis
Año de publicación	Últimos cuatro años (2020-2024)	Antes de 2020
Tema relacionado con Edge Computing	Sí	No
Enfoque en sectores específicos	Sí (agricultura, salud, seguridad en videovigilancia)	No
Artículos escritos en idioma accesible	Español, inglés	Otros idiomas
Acceso gratuito	Sí	No

Fuente: Los autores.

2.3 Bases de Datos Utilizadas

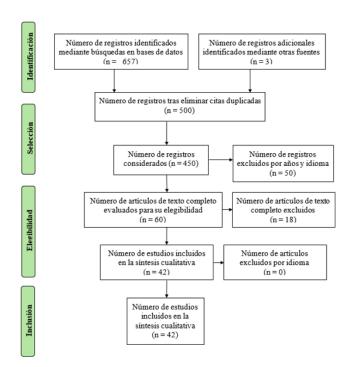
Para la búsqueda de artículos sobre las mejores prácticas en la implementación del Edge Computing se utilizaron cuatro bases:

- MDPI (Multidisciplinary Digital Publishing Institute)
- ScienceDirect
- DOAJ (Directory of Open Access Journals)
- PubMed

Estas bases de datos fueron seleccionadas por su cobertura complementaria en el campo del Edge Computing, siguiendo el enfoque de revisión sistemática de la literatura propuesto por (Sanguino Reyes, 2020) para tecnologías de la información. MDPI ofrece publicaciones multidisciplinarias de acceso abierto en tecnologías emergentes, mientras que ScienceDirect proporciona acceso a literatura científica de alto impacto en informática e ingeniería. DOAJ asegura la inclusión de investigaciones revisadas por pares de acceso abierto, ampliando la accesibilidad. PubMed, aunque centrada en ciencias de la salud, es crucial para explorar aplicaciones del Edge Computing en el sector médico. La selección de estas bases de datos sigue las mejores prácticas para revisiones sistemáticas en ciencias de la computación, como lo demuestra el estudio de (Bavaresco et al., 2020). Al igual que en dicho estudio, se buscó combinar fuentes que ofrezcan tanto publicaciones de alto impacto como literatura de acceso abierto, y específicas del campo, para obtener una visión amplia y complementaria del estado del arte en Edge Computing.

2.4 Metodología de PRISMA

Esta investigación se basa en la metodología PRISMA, un marco ampliamente utilizado para estructurar revisiones sistemáticas de literatura. La metodología permite mantener el orden y la

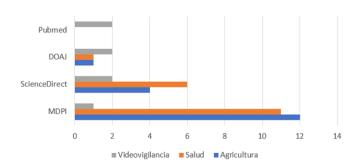

transparencia en la presentación de los resultados (Lamar Peña et al., 2024). Otros autores como (Cárdenas Villavicencio et al., 2024) destacan la importancia de esta metodología para identificar, seleccionar y sintetizar la literatura relevante de manera rigurosa y sistemática.

2.4.1 Resultados de PRISMA

La revisión sistemática de la literatura sobre Edge Computing, publicada entre 2020 y 2024 en inglés y español, siguió la metodología PRISMA como se evidencia en la Figura 1. El proceso comprendió cuatro etapas: Identificación, Selección, Elegibilidad e Inclusión, las cuales se detallan a continuación:

- Identificación: En esta fase, se identificaron 657 registros a través de búsquedas exhaustivas en bases de datos académicas. Además, se localizaron 3 registros adicionales mediante otras fuentes, como bibliografías o estudios citados en investigaciones relacionadas. Esta etapa buscó reunir todos los estudios potencialmente relevantes sobre Edge Computing en sectores clave como la videovigilancia, agricultura y atención médica, sin restringirse a un tipo particular de aplicación.
- Selección: Tras eliminar citas duplicadas entre los registros encontrados en la fase de identificación, el número de estudios fue reducido a 500 registros únicos. De estos, 450 registros fueron seleccionados para su consideración inicial, mientras que 50 registros fueron excluidos debido a que no cumplían con los criterios de inclusión en términos de año de publicación (anterior a 2020) o idioma (no estaban en inglés o español).
- Elegibilidad: En esta etapa, se evaluaron los 60 artículos restantes mediante la lectura de su texto completo, con el objetivo de determinar si cumplían con los criterios de elegibilidad establecidos, tales como: la relevancia del estudio, la metodología utilizada y su enfoque en casos de éxito en la implementación del Edge Computing. Como resultado de esta evaluación, se excluyeron 18 artículos que no cumplían con los criterios de inclusión debido a problemas metodológicos, falta de datos específicos o enfoques fuera del alcance de la investigación.
- Inclusión: Finalmente, se incluyeron 42 estudios en la síntesis cualitativa, los cuales proporcionan ejemplos relevantes y casos de éxito de la implementación del Edge Computing en videovigilancia, agricultura y atención médica. Estos estudios fueron seleccionados por su calidad metodológica, su contribución al análisis del impacto de esta tecnología y su relevancia en los sectores mencionados.

Si bien las bases de datos consultadas contienen una gran cantidad de artículos sobre Edge Computing, el proceso de selección aplicado en esta revisión fue riguroso y estuvo basado en criterios específicos de inclusión, tales como relevancia temática, calidad metodológica, y periodo de publicación (2020-2024). Por esta razón, el número final de 42 artículos es


Figura 1. Proceso de inclusión de artículos según PRISMA. Fuente: Los autores.

una muestra suficientemente representativa para los sectores analizados (Agricultura, Salud y Videovigilancia), garantizando la calidad y pertinencia de los estudios incluidos.

3. Resultados y Discusión

3.1 Análisis de la Distribución de Publicaciones

La Figura 2 muestra la distribución de publicaciones por base de datos y sector (Agricultura, Salud, Videovigilancia).

Figura 2. Distribución de publicaciones por base de datos y categoría.

Fuente: Los autores.

Informática y Sistemas

La Figura 2 muestra la distribución de las 42 publicaciones por base de datos y sector. MDPI emerge como la base de datos con el mayor número de publicaciones en Agricultura y Salud, siendo la fuente más representada con un total de 24 estudios. ScienceDirect ocupa el segundo lugar en importancia, con 12 publicaciones distribuidas en los tres sectores. DOAJ y PubMed, por su parte, tienen una representación más limitada.

Es importante notar que PubMed no registra publicaciones en los sectores de Agricultura y Salud, lo cual puede deberse a su enfoque primario en ciencias biomédicas. Esto no implica necesariamente que no haya artículos relevantes en estas áreas, sino que puede reflejar limitaciones en el alcance de la revisión, el acceso a ciertas bases de datos o una menor representación en el periodo evaluado.

El análisis sugiere que los sectores de Agricultura y Salud tienen una mayor producción académica relacionada con Edge Computing, mientras que el área de Videovigilancia cuenta con menos estudios identificados (7 en total). Esto representa una posible área de oportunidad para futuras investigaciones, dado el creciente interés en la optimización de sistemas de seguridad mediante Edge Computing.

El menor número de publicaciones en Videovigilancia sugiere un área de oportunidad para futuras investigaciones. Un ejemplo es el estudio de (Patrikar & Parate, 2022), que aborda los desafíos en la detección de anomalías en sistemas de videovigilancia. A pesar de los avances tecnológicos, la detección de eventos anómalos en los sistemas de videovigilancia sigue siendo un desafío que requiere considerable esfuerzo humano.

3.2 Análisis de la Distribución de Publicaciones por Año y Categoría

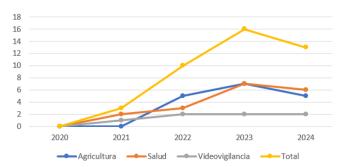


Figura 3. Evolución Anual de Publicaciones sobre Edge Computing por Área (2020-2024). Fuente: Los autores.

La Figura 3 ilustra la evolución de publicaciones sobre Edge Computing en Agricultura, Salud y Videovigilancia desde 2020 hasta 2024. Se observa un crecimiento significativo, partiendo de cero publicaciones en 2020 hasta alcanzar un pico de 16 en 2023, con una ligera disminución a 13 en 2024 (datos parciales hasta julio).

El área de Salud muestra el crecimiento más consistente, especialmente en 2023-2024, reflejando un interés creciente en las aplicaciones de Edge Computing en este sector. Esto se alinea

con las observaciones de (Awad et al., 2023), quienes destacan que IoMT ha traducido los sistemas de salud tradicionales en sistemas de salud inteligentes y que estos sistemas permitirán la detección, diagnóstico, monitoreo y tratamiento remoto de pacientes. Agricultura experimentó un aumento sostenido hasta 2023, con un leve descenso en 2024. Videovigilancia, aunque con menos estudios, mantiene una presencia estable desde 2022.

Esta tendencia general al alza sugiere una maduración de la investigación en Edge Computing en estos sectores clave. El ligero descenso en 2024 podría ser temporal, considerando que los datos son parciales. Además, la emergencia de tecnologías complementarias como la inteligencia en el borde habilitada por blockchain podría impulsar futuras investigaciones en esta área (Wu et al., 2021), según lo sugerido por (Du et al., 2021) en el contexto del Internet de las Cosas.

3.3 Metodología de Extracción de Buenas Prácticas

3.3.1 Delimitación del uso de normas ISO

Las normas ISO/IEC 30161-1:2020, ISO/IEC 30141:2018 v ISO/IEC 21823-2:2020 han sido seleccionadas como marco de referencia para guiar la extracción de buenas prácticas en Edge Computing debido a su relevancia y aplicabilidad en este contexto. Según (Chui et al., 2023), estas normas proporcionan definiciones, terminologías, arquitecturas de referencia y mejores prácticas para sistemas IoT, lo que las hace cruciales para implementaciones de Edge Computing. La norma ISO/ IEC 30141:2018 proporciona una arquitectura de referencia para el Internet de las Cosas (IoT), incluyendo aspectos clave como la interoperabilidad, la seguridad y la gestión de datos. La norma ISO/IEC 21823-2:2020 se centra específicamente en los requisitos de interoperabilidad para sistemas IoT. Adicionalmente, la norma ISO/IEC 30161-1:2020 especifica los requisitos para una plataforma de intercambio de datos IoT, lo cual es crucial para las implementaciones de Edge Computing, ya que aborda aspectos como los componentes de middleware de las redes de comunicación, el rendimiento de los puntos finales y las funciones específicas de IoT para poder realizar pruebas de latencia. Estas normas, en conjunto, ofrecen un marco sólido para evaluar y extraer buenas prácticas en Edge Computing, garantizando que se consideren los aspectos técnicos y operativos críticos.

3.3.2 Criterios para determinar un caso de éxito

Para identificar implementaciones exitosas de Edge Computing, se han definido criterios claros basados en las normas ISO/IEC 30161-1:2020, ISO/IEC 30141:2018 y ISO/IEC 21823-2:2020.:

3.3.3 Criterios para evaluar buenas prácticas

Para evaluar las prácticas implementadas en casos exitosos, se han establecido los siguientes criterios:

Para la evaluación, se utilizó la siguiente escala:

Informática y Sistemas

DOI: 10.33936/isrtic.v8i2.6879

Tabla 2. Criterios para determinar un caso de éxito en la implementación de Edge Computing.

Criterio	Descripción	Norma de Referencia
Seguridad	Garantizar la protección de datos e infraestructura con medidas de seguridad adecuadas.	ISO/IEC 30141:2018
Interoperabilidad	Capacidad de interactuar y comunicarse efectivamente con otros componentes y plataformas.	ISO/IEC 21823-2:2020
Eficiencia operativa	Mejora significativa en rendimiento, latencia y capacidad de procesamiento comparado con enfoques tradicionales.	-
Rendimiento de los puntos finales	Rendimiento óptimo en los puntos finales a través de las redes de comunicación.	ISO/IEC 30161-1:2020
Eficiencia en el intercambio de datos	Gestión eficiente del intercambio de datos entre diversos servicios IoT.	ISO/IEC 30161-1:2020
Cumplimiento de requisitos específicos del negocio	Satisfacción de necesidades y objetivos particulares de la organización, alineados con sus estrategias y proporcionando beneficios tangibles.	-

Fuente: Los autores, adaptado de (ISO/IEC, 2020).

Tabla 3. Criterios de evaluación para buenas prácticas en Edge Computing.

Criterio	Descripción
Adaptabilidad	Flexibilidad para aplicarse en diversos sectores y contextos con el planteamiento de la arquitectura.
Escalabilidad	Capacidad de crecimiento y expansión sin comprometer el rendimiento ante aumentos de carga y volumen de datos.
Resiliencia	Incorporación de mecanismos de tolerancia a fallos y recuperación ante incidentes para garantizar continuidad operativa.
Integración de middleware	Facilitación de coexistencia entre servicios IoT y servicios heredados mediante componentes de middleware eficientes (ISO/IEC 30161-1:2020).

Fuente: Los autores, adaptado de (ISO/IEC, 2020).

Tabla 4. Escala de evaluación para criterios de buenas prácticas.

Calificación	Significado
Sí	Cumple el criterio.
No	No cumple el criterio.
Parcial	Cumple parcialmente el criterio.
N/A	No aplica o no se menciona en el estudio.

Fuente: Los autores.

3.4 Discusión de los Hallazgos

En esta sección, se presenta un análisis detallado de las buenas prácticas seleccionadas, organizando los hallazgos en torno a las tres preguntas de investigación planteadas. Los resultados se ilustran mediante gráficos agrupados por área de aplicación. A continuación, os hallazgos obtenidos de los estudios seleccionados han sido organizados en torno a las tres preguntas de investigación planteadas:

- RQ1: Los estudios indican que las principales barreras en el sector agrícola se centran en la seguridad y la resiliencia, aspectos que presentan bajos niveles de cumplimiento. Aunque se han logrado avances significativos en interoperabilidad y eficiencia operativa, los desafíos de seguridad siguen siendo un obstáculo crítico para la adopción a gran escala. Un ejemplo es el trabajo de (Emmi et al., 2023), que aborda la integración de robots autónomos con IoT, pero identifica problemas relacionados con la seguridad de los datos. Del mismo modo, (Puig et al., 2022) destaca la interoperabilidad de una plataforma de bajo costo para el riego de precisión, aunque la seguridad sigue siendo un área de mejora.
- RQ2: En el sector salud, la seguridad es fundamental debido a la sensibilidad de los datos manejados. Varios estudios han propuesto mejores prácticas para abordar este desafío. Por ejemplo, (Famá et al., 2022) propone una arquitectura de monitoreo continuo de pacientes, utilizando estándares abiertos como FHIR para garantizar la seguridad y la interoperabilidad de los datos. Además, (Rivadeneira et al., 2024) introduce un modelo de preservación de privacidad basado en IA en el borde, que mejora la seguridad de los datos de salud al tiempo que enfrenta problemas de escalabilidad y resiliencia.
- RQ3: Los estudios sobre videovigilancia muestran que la implementación de Edge Computing ha mejorado significativamente la eficiencia operativa de los sistemas de seguridad, especialmente en términos de procesamiento de

Informática y Sistemas

video en tiempo real. (Lambropoulos et al., 2024), por ejemplo, demuestra cómo la infraestructura edge virtualizada permite una mejor interoperabilidad, aunque la seguridad sigue siendo un área problemática. (Zheng et al., 2024) reporta una solución de blockchain que mejora la escalabilidad y la eficiencia operativa al alcanzar más de 1500 transacciones por segundo (TPS), lo que resalta el potencial de esta tecnología en la mejora de la vigilancia basada en Edge Computing.

3.4.1 Análisis de Resultados de Cumplimiento de Criterios

Las Figuras 4, 5 y 6 revelan patrones interesantes en la implementación del Edge Computing en agricultura, salud y videovigilancia, respectivamente. En las tres áreas, la eficiencia operativa destaca con un cumplimiento total en todos los casos estudiados (17 en agricultura, 18 en salud y 7 en videovigilancia). Además, el cumplimiento de requisitos específicos del negocio y el rendimiento de los puntos finales también muestran resultados sólidos en los tres sectores. Sin embargo, se observan desafíos comunes en seguridad y resiliencia. En particular, la seguridad presenta bajos niveles de cumplimiento total, con 1 caso en agricultura, 5 en salud y 1 en videovigilancia. Por otro lado, la resiliencia muestra resultados aún más preocupantes, con ningún caso de cumplimiento total en agricultura, 4 en salud y 1 en videovigilancia.

Por último, la interoperabilidad y la escalabilidad varían entre sectores, siendo la videovigilancia la que enfrenta mayores retos en interoperabilidad, con solo 2 casos de cumplimiento total. Estos hallazgos subrayan la necesidad de priorizar la seguridad y la resiliencia en futuras implementaciones de Edge Computing

Figura 4. Cumplimiento de criterios en la implementación de Edge Computing en agricultura.

Fuente: Los autores.

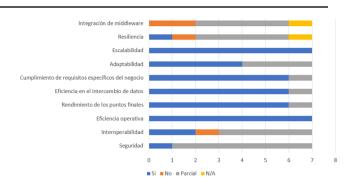



Figura 5. Cumplimiento de criterios en la implementación de Edge Computing en salud.

Fuente: Los autores.

Figura 6. Cumplimiento de criterios en la implementación de Edge Computing en videovigilancia.

Fuente: Los autores.

en los tres sectores, mientras se mantienen los logros en eficiencia operativa y rendimiento.

3.5 Argumentación de Buenas Prácticas basados en los casos de éxito

A continuación, se detallan los resultados de la aplicación de los criterios de selección de buenas prácticas para cada artículo. Se han elegido los 3 estudios con la puntuación más alta en cada categoría (videovigilancia, agricultura y atención médica). La puntuación de cada estudio se calcula evaluando los 10 criterios establecidos previamente, contabilizando el número de criterios que cumplen con la calificación "Sí", y dividiendo este número por el número total de criterios para obtener un promedio. Ver Anexos 1,2 y 3.

Adicionalmente, aunque no se enfoca específicamente en videovigilancia, el estudio de (Reyana et al., 2023) titulado "Opportunities of IoT in Fog Computing for High Fault Tolerance and Sustainable Energy Optimization", ofrece una perspectiva valiosa sobre la optimización del tiempo de respuesta en entornos de computación en niebla, que son directamente aplicables a sistemas de videovigilancia. El estudio propone un esquema de optimización de energía basado en la calidad de servicio (QoS-EO) que logra tiempos de respuesta excepcionalmente bajos. Según los resultados, se muestra un tiempo de respuesta máximo de 8 ms, un tiempo de respuesta mínimo de 1 ms y un tiempo de respuesta promedio de 3 ms. Estos tiempos de respuesta ultrarrápidos son cruciales en sistemas de videovigilancia en tiempo real, donde la detección y respuesta inmediata a eventos es fundamental. La aplicación de técnicas similares en sistemas de videovigilancia basados en Edge Computing podría mejorar significativamente la capacidad de respuesta y la eficiencia operativa, permitiendo una detección y análisis de eventos más rápidos y precisos.

3.6 Propuesta de Mejores Prácticas

Basándonos en los hallazgos de los estudios analizados en agricultura, salud y videovigilancia, se propone la siguiente propuesta de mejores prácticas para la implementación del Edge Computing.

DOI: 10.33936/isrtic.v8i2.6879

Tabla 5. Resumen de Estudios Destacados sobre Implementaciones de Edge Computing en Agricultura, Salud y Videovigilancia

Sector	Estudio	Aspectos Destacados	Áreas de Mejora	Contribución Clave
	(Emmi et al., 2023)	Interoperabilidad, Eficiencia operativa	Seguridad, Resiliencia	Integración de robots autónomos con IoT y computación en la nube.
Agricultura	(Puig et al., 2022)	Interoperabilidad, Eficiencia operativa	Seguridad	Plataforma IoT de bajo costo para riego de precisión.
	(Bua et al., 2024)	Interoperabilidad, Eficiencia operativa, Adaptabilidad	Seguridad	Reducción del 84.48% en latencia de transmisión en invernaderos inteligentes. Utilizar estándares como NGSI-LD y MQTT.
	(Famá et al., 2022)	Seguridad, Interoperabilidad, Eficiencia operativa	Escalabilidad	Arquitectura para monitoreo continuo de pacientes. estándares abiertos y protocolos de intercambio de datos de salud, como FHIR.
Salud	(Chahed et al., 2023)	Interoperabilidad, Eficiencia operativa, Adaptabilidad	Seguridad	Framework AIDA integrando redes sensibles al tiempo con edge-cloud.
	(Rivadeneira et al., 2024)	Seguridad, Interoperabilidad, Eficiencia en intercambio de datos	Escalabilidad, Resiliencia	Modelo de preservación de privacidad con IA en el borde.
	(Lambropoulos et al., 2024)	Eficiencia operativa, Interoperabilidad	Seguridad, Eficiencia en intercambio de datos	Uso de SBCs para infraestructura edge virtualizada.
	(Zheng et al., 2024)	Eficiencia operativa, Escalabilidad	Seguridad, Resiliencia	Solución blockchain sharding y DAG alcanzando 1535.4 TPS.
Videovigilancia	(Ravindran, 2023)	Eficiencia operativa, Rendimiento de puntos finales	Seguridad, Interoperabilidad, Resiliencia	Revisión de sistemas edge para análisis de video en tiempo real.
	(Reyana et al., 2023)	Eficiencia operativa, Rendimiento		Esquema de optimización logrando tiempos de respuesta de 1-8 ms.

Fuente: Los autores.

Tabla 6. Resumen de Estudios Destacados sobre Implementaciones de Edge Computing en Agricultura, Salud y Videovigilancia

Criterios	Mejores Prácticas
Priorizar la seguridad y privacidad	Implementar cifrado robusto y mecanismos de autenticación fuertes, y adoptar enfoques de privacidad por diseño, como el aprendizaje federado en IA, para proteger datos y garantizar la privacidad.
Enfatizar la interoperabilidad	Utilizar estándares abiertos y protocolos como MQTT y FHIR, implementar arquitecturas de microservicios para la integración y asegurar compatibilidad con sistemas existentes y futuros.
Optimizar la eficiencia operativa	Reducir latencia con procesamiento en el borde, usar virtualización en hardware de bajo consumo y aplicar algoritmos de optimización para la distribución de cargas de trabajo.
Mejorar el rendimiento de los puntos finales	Emplear hardware especializado para tareas intensivas, implementar técnicas de compresión de datos eficientes y optimizar algoritmos para dispositivos con recursos limitados.
Garantizar la escalabilidad	Diseñar arquitecturas modulares, utilizar tecnologías como el sharding de blockchain para mejorar el rendimiento y aplicar balanceo de carga dinámico.
Fomentar la adaptabilidad	Crear sistemas flexibles que se reconfiguren dinámicamente, usar plataformas de desarrollo low-code/no-code y adoptar arquitecturas basadas en contenedores para mayor portabilidad.
Fortalecer la resiliencia	Implementar redundancia y recuperación ante fallos, usar procesamiento distribuido para evitar puntos únicos de fallo y desarrollar estrategias de continuidad operativa y recuperación de desastres.
Optimizar la eficiencia en el intercambio de datos	Utilizar protocolos de comunicación ligeros, técnicas de procesamiento de datos en el borde, y estrategias de almacenamiento en caché y sincronización inteligente.
Asegurar el cumplimiento de requisitos específicos del negocio	Realizar un análisis detallado de requisitos, involucrar a los stakeholders en el diseño y establecer métricas de rendimiento alineadas con los objetivos del negocio.
Integración de middleware/s	Usar plataformas de middleware estandarizadas, implementar APIs bien definidas para integración externa y considerar patrones de diseño como Event-Driven Architecture para mayor flexibilidad.

Fuente: Los autores.

4. Conclusiones

La propuesta de buenas prácticas para la implementación del Edge Computing en agricultura, videovigilancia y atención médica, basada en casos de éxito, proporciona un marco integral que equilibra eficiencia operativa, seguridad, interoperabilidad y escalabilidad. La eficiencia operativa emerge como el beneficio más consistente en los tres sectores, mientras que la seguridad y la resiliencia persisten como áreas críticas de mejora, especialmente en salud y videovigilancia. La interoperabilidad y escalabilidad muestran resultados variables entre sectores.

El uso de protocolos abiertos como MQTT, FHIR y arquitecturas basadas en microservicios se perfila como mejor práctica para mejorar la interoperabilidad. La integración de tecnologías emergentes como blockchain sharding e Inteligencia Artificial en el borde ofrece nuevas posibilidades para optimizar eficiencia y seguridad. Estos hallazgos subrayan la necesidad de enfoques estandarizados y soluciones adaptables en diversos contextos de implementación.

Para futuras investigaciones, se debería abordar los desafíos

persistentes de seguridad y resiliencia, explorando métodos avanzados de criptografía y técnicas de recuperación ante fallos. Además, se requiere más investigación sobre la optimización de recursos en dispositivos de borde, particularmente en escenarios con restricciones energéticas.

Agradecimientos

Expresamos nuestro sincero agradecimiento a los tutores de la Universidad Técnica de Machala por su valiosa contribución en la revisión y perfeccionamiento de nuestro artículo. Su orientación ha sido fundamental para el desarrollo de esta investigación. También reconocemos la importancia del respaldo brindado por los seres queridos y amistades de quienes realizamos este estudio. Aunque su contribución fue indirecta, su aliento continuo nos proporcionó la motivación y el ánimo necesarios para llevar a cabo este trabajo.

Contribución de los autores

Anderson Ivan Asanza Honores: Administración del proyecto, Investigación, Redacción-borrador y Metodología.

Informática y Sistemas

Darwin Geovanny Chuchuca Vacacela: Conceptualización, Investigación, revisión y edición del artículo. Mariuxi Paola Zea Ordoñez: Metodología, revisión y edición del artículo. Tania Yesminia Contreras Alonso: Revisión y edición del artículo.

Los autores declaran no tener ningún conflicto de interés.

Anexos

A.1. Artículos de estudio del sector de agricultura

Conflictos de interés

ID / Cita	Autor por correspondencia	Año de publicación	Titulo	DOI	Base de datos	Puntuación
1 (Emmi et al., 2023)	Luis Emmi	2023	Exploiting the Internet Resources for Autonomous Robots in Agriculture	https://doi.org/10.3390/agri- culture13051005	MDPI	0.8
2 (Aguilera et al., 2023)	Cristhian A. Aguilera	2024	Comprehensive Analysis of Model Errors in Blueberry Detection and Maturity Classification: Identifying Limitations and Proposing Future Improvements in Agricultural Monitoring	https://doi.org/10.3390/agri- culture14010018	MDPI	0.4
3 (Nguyen et al., 2024)	Hoang Hai Nguyen	2024	An Integrated IoT Sensor-Camera System toward Leveraging Edge Computing for Smart Greenhouse Mushroom Cultivation	https://doi.org/10.3390/	MDPI	0.7
4 (Puig et al., 2022)	Francisco Puig	2022	Development of a Low-Cost Open- Source Platform for Smart Irrigation Systems	https://doi.org/10.3390/ agronomy12122909	MDPI	0.8
5 (Bua et al., 2024)	Cristian Bua	2024	GymHydro: An Innovative Modular Small-Scale Smart Agriculture System for Hydroponic Greenhouses	https://doi.org/10.3390/electronics13071366	MDPI	0.8
6 (Estrada-López et al., 2023)	Johan J. Estrada- López	2023	A Sustainable Forage-Grass-Power Fuel Cell Solution for Edge-Computing Wireless Sensing Processing in Agriculture 4.0 Applications	https://doi.org/10.3390/ en16072943	MDPI	0.6
7 (Assunção et al., 2022)	Eduardo Assunção	2022	Real-Time Image Detection for Edge Devices: A Peach Fruit Detection Application	https://doi.org/10.3390/ fi14110323	MDPI	0.4
8 (Kalyani et al., 2024)	Yogeswaranathan Kalyani	2024	Application Scenarios of Digital Twins for Smart Crop Farming through Cloud–Fog–Edge Infrastructure	https://doi.org/10.3390/ fi16030100	MDPI	0.8
9 (Qi et al., 2022)	Chao Qi	2022	Medicinal Chrysanthemum Detection under Complex Environments Using the MC- LCNN Model	https://doi.org/10.3390/ plants11070838	MDPI	0.4
10 (Koubaa et al., 2023)	Anis Koubaa	2023	AERO: AI-Enabled Remote Sensing Observation with Onboard Edge Computing in UAVs	https://doi.org/10.3390/ rs15071873	MDPI	0.7
11 (Loukatos et al., 2022)	Dimitrios Loukatos	2022	Enriching IoT Modules with Edge AI Functionality to Detect Water Misuse Events in a Decentralized Manner	https://doi.org/10.3390/ s22134874	MDPI	0.8
12 (Alzuhair & Alghaihab, 2023)	Ahmed Alzuhair	2023	The Design and Optimization of an Acoustic and Ambient Sensing AIoT Platform for Agricultural Applications	https://doi.org/10.3390/ s23146262	MDPI	0.8

Informática y Sistemas

13 (Rudrakar & Rughani, 2023)	Santoshi Rudrakar	2023	IoT based Agriculture (Ag-IoT): A detailed study on Architecture, Security and Forensics	https://doi.org/10.1016/j. inpa.2023.09.002	Science- Direct	0.5
14 (Restrepo-Arias et al., 2024)	Juan Felipe Restrepo-Arias	2024	Image classification on smart agriculture platforms: Systematic literature review	https://doi.org/10.1016/j. aiia.2024.06.002	Science- Direct	0.5
15 (Abbasi et al., 2022)	Rabiya Abbasi	2022	The digitization of agricultural industry – a systematic literature review on agriculture 4.0	https://doi.org/10.1016/j. atech.2022.100042	Science- Direct	0.4
16 (Rastegari et al., 2023)	Hajar Rastegari	2023	Internet of Things in aquaculture: A review of the challenges and potential solutions based on current and future trends	https://doi.org/10.1016/j. atech.2023.100187	Science- Direct	0.5
17 (Liu et al., 2023)	Le Liu	2023	An Edge-computing flow meter reading recognition algorithm optimized for agricultural IoT network	https://doi.org/10.1016/j. atech.2023.100236	DOAJ	0.6

A.2. Artículos de estudio del sector de salud

ID / Cita	Autor por correspondencia	Año de publicación	Titulo	DOI	Base de datos	Puntuación
1 (Gehlot et al., 2022)	Anita Gehlot	2022	Dairy 4.0: Intelligent Communication Ecosystem for the Cattle Animal Welfare with Blockchain and IoT Enabled Technologies	https://doi.org/10.3390/ app12147316	MDPI	0.7
2 (Najeh et al., 2024)	Houda Najeh	2024	Real-Time Human Activity Recognition on Embedded Equipment: A Comparative Study	https://doi.org/10.3390/ app14062377	MDPI	0.3
3 (Ijaz et al., 2021)	Muhammad Ijaz	2021	Integration and Applications of Fog Computing and Cloud Computing Based on the Internet of Things for Provision of Healthcare Services at Home	https://doi.org/10.3390/electronics10091077	MDPI	0.6
4 (Alam & Rahmani, 2023)	Mahbub Ul Alam	2023	FedSepsis: A Federated Multi- Modal Deep Learning-Based Internet of Medical Things Application for Early Detection of Sepsis from Electronic Health Records Using Raspberry Pi and Jetson Nano Devices	https://doi.org/10.3390/ s23020970	MDPI	0.7
5 (Elbagoury et al., 2023)	Bassant M. Elbagoury	2023	A Hybrid Stacked CNN and Residual Feedback GMDH-LSTM Deep Learning Model for Stroke Prediction Applied on Mobile AI Smart Hospital Platform	https://doi.org/10.3390/ s23073500	MDPI	0.7
6 (Kolosov et al., 2023)	Dimitrios Kolosov	2023	Contactless Camera-Based Heart Rate and Respiratory Rate Monitoring Using AI on Hardware	https://doi.org/10.3390/ s23094550	MDPI	0.6
7 (Ali et al., 2023)	Aitizaz Ali	2023	Blockchain-Powered Healthcare Systems: Enhancing Scalability and Security with Hybrid Deep Learning	https://doi.org/10.3390/ s23187740	MDPI	0.8
8 (Armijo & Zamora-Sánchez, 2024)	Alberto Armijo	2024	Integration of Railway Bridge Structural Health Monitoring into the Internet of Things with a Digital Twin: A Case Study	https://doi.org/10.3390/ s24072115	MDPI	0.8

				ī	1	
9 (Tripathy et al., 2023)	Subhranshu Sekhar Tripathy	2023	An Intelligent Health Care System in Fog Platform with Optimized Performance	https://doi.org/10.3390/ su15031862	MDPI	0.8
10 (Reyana et al., 2023)	A. Reyana	2023	Opportunities of IoT in Fog Computing for High Fault Tolerance and Sustainable Energy Optimization	https://doi.org/10.3390/ su15118702	MDPI	0.7
11 (Xavier et al., 2024)	Ruben Xavier	2024	Integrating Multi-Access Edge Computing (MEC) into Open 5G Core	https://doi.org/10.3390/tele- com5020022	MDPI	0.8
12 (Shukla et al., 2021)	Saurabh Shukla	2021	Identification and Authentication in Healthcare Internet-of-Things Using Integrated Fog Computing Based Blockchain Model	https://doi.org/10.1016/j. iot.2021.100422	Science- Direct	0.8
13 (Hyysalo et al., 2022)	Jarkko Hyysalo	2022	Smart mask – Wearable IoT solution for improved protection and personal health	https://doi.org/10.1016/j. iot.2022.100511	Science- Direct	0.6
14 (Famá et al., 2022)	Fernanda Famá	2022	An IoT-based interoperable architecture for wireless biomonitoring of patients with sensor patches	https://doi.org/10.1016/j. iot.2022.100547	Science- Direct	1
15 (Chahed et al., 2023)	Hamza Chahed	2023	AIDA—A holistic AI-driven networking and processing framework for industrial IoT applications	https://doi.org/10.1016/j. iot.2023.100805	Science- Direct	0.9
16 (Rivadeneira et al., 2024)	Jorge Eduardo Rivadeneira	2024	A unified privacy preserving model with AI at the edge for Human-in-the-Loop Cyber- Physical Systems	https://doi.org/10.1016/j. iot.2023.101034	Science- Direct	0.8
17 (Fernández et al., 2024)	Eduardo Illueca Fernández	2024	Embedded machine learning of IoT streams to promote early detection of unsafe environments	https://doi.org/10.1016/j. iot.2024.101128	Science- Direct	0.6
18 (D. N et al., 2024)	Sachin D.N.	2024	FedCure: A Heterogeneity-Aware Personalized Federated Learning Framework for Intelligent Healthcare Applications in IoMT Environments	10.1109/AC- CESS.2024.3357514	DOAJ	0.7

A.3. Artículos de estudio del sector de videovigilancia

ID / Cita	Autor por correspondencia	Año de publicación	Titulo	DOI	Base de datos	Puntuación
1 (Lambropoulos et al., 2024)	Georgios Lambropoulos	2024	Implementing Virtualization on Single-Board Computers: A Case Study on Edge Computing	https://doi.org/10.3390/computers13020054	MDPI	0.7
2 (Zheng et al., 2024)	Wenhu Zheng	2024	Data management method for building internet of things based on blockchain sharding and DAG	https://doi.org/10.1016/j. ioteps.2024.01.001	Science- Direct	0.6

3 (Singh et al., 2022)	Prashant Singh	2022	Internet of Things for sustainable railway transportation: Past, present, and future	https://doi.org/10.1016/j. clscn.2022.100065	Science- Direct	0.4
4 (Ravindran, 2023)	Arun A. Ravindran	2023	Internet-of-Things Edge Computing Systems for Streaming Video Analytics: Trails Behind and the Paths Ahead	https://doi.org/10.3390/ iot4040021	DOAJ	0.6
5 (Yang et al., 2023)	Shuangye Yang	2023	Edge Intelligence-Assisted Asymmetrical Network Control and Video Decoding in the Industrial IoT with Speculative Parallelization	https://doi.org/10.3390/ sym15081516	DOAJ	0.5
6 (Bommu et al., 2023)	Samuyelu Bommu	2023	Smart City IoT System Network Level Routing Analysis and Blockchain Security Based Implementation	https://doi.org/10.1007/ s42835-022-01239-4	PUBMED	0.6
7 (Kim et al., 2021)	Jingyeom Kim	2021	AdaMM: Adaptive Object Movement and Motion Tracking in Hierarchical Edge Computing System	https://doi.org/10.3390/ s21124089	PUBMED	0.6

Referencias bibliográficas

- Abbasi, R., Martinez, P., & Ahmad, R. (2022). The digitization of agricultural industry a systematic literature review on agriculture 4.0. Smart Agricultural Technology, 2, 100042. https://doi.org/10.1016/j.atech.2022.100042
- Abreha, H. G., Hayajneh, M., & Serhani, M. A. (2022). Federated Learning in Edge Computing: A Systematic Survey. Sensors, 22(2), 450. https://doi.org/10.3390/s22020450
- Aguilera, C. A., Figueroa-Flores, C., Aguilera, C., & Navarrete, C. (2023). Comprehensive Analysis of Model Errors in Blueberry Detection and Maturity Classification: Identifying Limitations and Proposing Future Improvements in Agricultural Monitoring. Agriculture, 14(1), 18. https://doi.org/10.3390/agriculture14010018
- Alam, M. U., & Rahmani, R. (2023). FedSepsis: A Federated Multi-Modal Deep Learning-Based Internet of Medical Things Application for Early Detection of Sepsis from Electronic Health Records Using Raspberry Pi and Jetson Nano Devices. Sensors, 23(2), 970. https://doi. org/10.3390/s23020970
- Ali, A., Ali, H., Saeed, A., Ahmed Khan, A., Tin, T. T., Assam, M., Ghadi, Y. Y., & Mohamed, H. G. (2023). Blockchain-Powered Healthcare Systems: Enhancing Scalability and Security with Hybrid Deep Learning. Sensors, 23(18), 7740. https://doi.org/10.3390/s23187740
- Alwakeel, A. M. (2021). An Overview of Fog Computing and Edge Computing Security and Privacy Issues. Sensors, 21(24), 8226. https://doi.org/10.3390/s21248226
- Alzu'bi, A., Alomar, A., Alkhaza'leh, S., Abuarqoub, A., & Hammoudeh, M. (2024). A Review of Privacy and Security of Edge Computing in Smart Healthcare Systems: Issues, Challenges, and Research Directions. Tsinghua Science and Technology, 29(4), 1152–1180. https://doi.org/10.26599/TST.2023.9010080

- Alzuhair, A., & Alghaihab, A. (2023). The Design and Optimization of an Acoustic and Ambient Sensing AIoT Platform for Agricultural Applications. Sensors, 23(14), 6262. https://doi.org/10.3390/s23146262
- Armijo, A., & Zamora-Sánchez, D. (2024). Integration of Railway Bridge Structural Health Monitoring into the Internet of Things with a Digital Twin: A Case Study. Sensors, 24(7), 2115. https://doi.org/10.3390/s24072115
- Assunção, E., Gaspar, P. D., Alibabaei, K., Simões, M. P., Proença, H., Soares, V. N. G. J., & Caldeira, J. M. L. P. (2022). Real-Time Image Detection for Edge Devices: A Peach Fruit Detection Application. Future Internet, 14(11), 323. https://doi.org/10.3390/fi14110323
- Awad, A. I., Fouda, M. M., Khashaba, M. M., Mohamed, E. R., & Hosny, K. M. (2023). Utilization of mobile edge computing on the Internet of Medical Things: A survey. ICT Express, 9(3), 473–485. https://doi.org/10.1016/j.icte.2022.05.006
- Bai, T., Pan, C., Deng, Y., Elkashlan, M., Nallanathan, A., & Hanzo, L. (2020). Latency Minimization for Intelligent Reflecting Surface Aided Mobile Edge Computing. IEEE Journal on Selected Areas in Communications, 38(11), 2666–2682. https://doi.org/10.1109/JSAC.2020.3007035
- Baktayan, A. A., Thabit Zahary, A., & Ahmed Al-Baltah, I. (2024). A Systematic Mapping Study of UAV-Enabled Mobile Edge Computing for Task Offloading. IEEE Access, 12, 101936–101970. https://doi.org/10.1109/ ACCESS.2024.3431922
- Bavaresco, R., Silveira, D., Reis, E., Barbosa, J., Righi, R., Costa, C., Antunes, R., Gomes, M., Gatti, C., Vanzin, M., Junior, S. C., Silva, E., & Moreira, C. (2020). Conversational agents in business: A systematic literature review and future research directions. Computer Science Review, 36, 100239. https://doi.org/10.1016/j.cosrev.2020.100239

- Bommu, S., M, A. K., Babburu, K., N, S., Thalluri, L. N., G, V. G., Gopalan, A., Mallapati, P. K., Guha, K., Mohammad, H. R., & S, S. K. (2023). Smart City IoT System Network Level Routing Analysis and Blockchain Security Based Implementation. Journal of Electrical Engineering & Technology, 18(2), 1351–1368. https://doi.org/10.1007/s42835-022-01239-4
- Bua, C., Adami, D., & Giordano, S. (2024). GymHydro: An Innovative Modular Small-Scale Smart Agriculture System for Hydroponic Greenhouses. Electronics, 13(7), 1366. https://doi.org/10.3390/electronics13071366
- Cárdenas Villavicencio, O. E., Zea Ordoñez, M. P., Honores Tapia, J. A., & Lamar Peña, F. S. (2024). Visiones del Futuro Urbano: El Paradigma Teórico de las Smart Cities. Informática y Sistemas: Revista de Tecnologías de la Informática y las Comunicaciones, 8(1). https://doi.org/10.33936/isrtic.v8i1.6324
- Chahed, H., Usman, M., Chatterjee, A., Bayram, F., Chaudhary, R., Brunstrom, A., Taheri, J., Ahmed, B. S., & Kassler, A. (2023). AIDA—A holistic AI-driven networking and processing framework for industrial IoT applications. Internet of Things, 22, 100805. https://doi.org/10.1016/j. iot.2023.100805
- Chen, S., Li, Q., Zhou, M., & Abusorrah, A. (2021). Recent Advances in Collaborative Scheduling of Computing Tasks in an Edge Computing Paradigm. Sensors, 21(3), 779. https://doi.org/10.3390/s21030779
- Chui, K. T., Gupta, B. B., Liu, J., Arya, V., Nedjah, N., Almomani, A., & Chaurasia, P. (2023). A Survey of Internet of Things and Cyber-Physical Systems: Standards, Algorithms, Applications, Security, Challenges, and Future Directions. Information, 14(7), 388. https://doi. org/10.3390/info14070388
- D. N, S., B, A., Hegde, S., Abhijit, C. S., & Ambesange, S. (2024). FedCure: A Heterogeneity-Aware Personalized Federated Learning Framework for Intelligent Healthcare Applications in IoMT Environments. IEEE Access, 12, 15867–15883. https://doi.org/10.1109/ACCESS.2024.3357514
- Du, Y., Wang, Z., & Leung, V. C. M. (2021). Blockchain-Enabled Edge Intelligence for IoT: Background, Emerging Trends and Open Issues. Future Internet, 13(2), 48. https://doi.org/10.3390/fi13020048
- Elbagoury, B. M., Vladareanu, L., Vlădăreanu, V., Salem, A. B., Travediu, A.-M., & Roushdy, M. I. (2023). A Hybrid Stacked CNN and Residual Feedback GMDH-LSTM Deep Learning Model for Stroke Prediction Applied on Mobile AI Smart Hospital Platform. Sensors, 23(7), 3500. https://doi.org/10.3390/s23073500

- Emmi, L., Fernández, R., Gonzalez-de-Santos, P., Francia, M., Golfarelli, M., Vitali, G., Sandmann, H., Hustedt, M., & Wollweber, M. (2023). Exploiting the Internet Resources for Autonomous Robots in Agriculture. Agriculture, 13(5), 1005. https://doi.org/10.3390/agriculture13051005
- Estrada-López, J. J., Vázquez-Castillo, J., Castillo-Atoche, A., Osorio-de-la-Rosa, E., Heredia-Lozano, J., & Castillo-Atoche, A. (2023). A Sustainable Forage-Grass-Power Fuel Cell Solution for Edge-Computing Wireless Sensing Processing in Agriculture 4.0 Applications. Energies, 16(7), 2943. https://doi.org/10.3390/en16072943
- Famá, F., Faria, J. N., & Portugal, D. (2022). An IoT-based interoperable architecture for wireless biomonitoring of patients with sensor patches. Internet of Things, 19, 100547. https://doi.org/10.1016/j.iot.2022.100547
- Fernández, E. I., Jara Valera, A. J., & Fernández Breis, J. T. (2024). Embedded machine learning of IoT streams to promote early detection of unsafe environments. Internet of Things, 25, 101128. https://doi.org/10.1016/j.iot.2024.101128
- Gehlot, A., Malik, P. K., Singh, R., Akram, S. V., & Alsuwian, T. (2022). Dairy 4.0: Intelligent Communication Ecosystem for the Cattle Animal Welfare with Blockchain and IoT Enabled Technologies. Applied Sciences, 12(14), 7316. https://doi.org/10.3390/app12147316
- Hyysalo, J., Dasanayake, S., Hannu, J., Schuss, C., Rajanen, M., Leppänen, T., Doermann, D., & Sauvola, J. (2022). Smart mask – Wearable IoT solution for improved protection and personal health. Internet of Things, 18, 100511. https://doi.org/10.1016/j.iot.2022.100511
- Ijaz, M., Li, G., Lin, L., Cheikhrouhou, O., Hamam, H., & Noor, A. (2021). Integration and Applications of Fog Computing and Cloud Computing Based on the Internet of Things for Provision of Healthcare Services at Home. Electronics, 10(9), 1077. https://doi.org/10.3390/ electronics10091077
- ISO/IEC. (2020). Internet of Things (IoT) standards. https://www.iso.org/obp/ui/
- Kalyani, Y., Vorster, L., Whetton, R., & Collier, R. (2024). Application Scenarios of Digital Twins for Smart Crop Farming through Cloud–Fog–Edge Infrastructure. Future Internet, 16(3), 100. https://doi.org/10.3390/fi16030100
- Kim, J., Lee, J., & Kim, T. (2021). AdaMM: Adaptive Object Movement and Motion Tracking in Hierarchical Edge Computing System. Sensors, 21(12), 4089. https://doi. org/10.3390/s21124089
- Kolosov, D., Kelefouras, V., Kourtessis, P., & Mporas, I. (2023). Contactless Camera-Based Heart Rate and Respiratory

Informática y Sistemas

- Rate Monitoring Using AI on Hardware. Sensors, 23(9), 4550. https://doi.org/10.3390/s23094550
- Koubaa, A., Ammar, A., Abdelkader, M., Alhabashi, Y., & Ghouti, L. (2023). AERO: AI-Enabled Remote Sensing Observation with Onboard Edge Computing in UAVs. Remote Sensing, 15(7), 1873. https://doi.org/10.3390/rs15071873
- Lamar Peña, F. S., Vega Mite, G. A., Honores Tapia, J. A., & Cárdenas Villavicencio, O. E. (2024). Validación y emisión de certificados en Educación Superior utilizando tecnología Blockchain. Informática y Sistemas: Revista de Tecnologías de la Informática y las Comunicaciones, 8(1), 36. https://doi.org/10.33936/isrtic.v8i1.6535
- Lambropoulos, G., Mitropoulos, S., Douligeris, C., & Maglaras, L. (2024). Implementing Virtualization on Single-Board Computers: A Case Study on Edge Computing. Computers, 13(2), 54. https://doi.org/10.3390/computers13020054
- Liu, L., Qiao, X., Liang, W., Oboamah, J., Wang, J., Rudnick, D. R., Yang, H., Katimbo, A., & Shi, Y. (2023). An Edge-computing flow meter reading recognition algorithm optimized for agricultural IoT network. Smart Agricultural Technology, 5, 100236. https://doi.org/10.1016/j.atech.2023.100236
- Loukatos, D., Lygkoura, K.-A., Maraveas, C., & Arvanitis, K. G. (2022). Enriching IoT Modules with Edge AI Functionality to Detect Water Misuse Events in a Decentralized Manner. Sensors, 22(13), 4874. https://doi.org/10.3390/s22134874
- Najeh, H., Lohr, C., & Leduc, B. (2024). Real-Time Human Activity Recognition on Embedded Equipment: A Comparative Study. Applied Sciences, 14(6), 2377. https://doi.org/10.3390/app14062377
- Nguyen, H. H., Shin, D.-Y., Jung, W.-S., Kim, T.-Y., & Lee, D.-H. (2024). An Integrated IoT Sensor-Camera System toward Leveraging Edge Computing for Smart Greenhouse Mushroom Cultivation. Agriculture, 14(3), 489. https://doi.org/10.3390/agriculture14030489
- Oluwole Temidayo Modupe, Aanuoluwapo Ayodeji Otitoola, Oluwatayo Jacob Oladapo, Oluwatosin Oluwatimileyin Abiona, Oyekunle Claudius Oyeniran, Adebunmi Okechukwu Adewusi, Abiola Moshood Komolafe, & Amaka Obijuru. (2024). REVIEWING THE TRANSFORMATIONAL IMPACT OF EDGE COMPUTING ON REAL-TIME DATA PROCESSING AND ANALYTICS. Computer Science & IT Research Journal, 5(3), 693–702. https://doi.org/10.51594/csitrj. v5i3.929
- Patrikar, D. R., & Parate, M. R. (2022). Anomaly detection using edge computing in video surveillance system: Review. International Journal of Multimedia Information Retrieval, 11(2), 85–110. https://doi.org/10.1007/s13735-022-00227-8
- Puig, F., Rodríguez Díaz, J. A., & Soriano, M. A. (2022).

- Development of a Low-Cost Open-Source Platform for Smart Irrigation Systems. Agronomy, 12(12), 2909. https://doi.org/10.3390/agronomy12122909
- Qi, C., Chang, J., Zhang, J., Zuo, Y., Ben, Z., & Chen, K. (2022).

 Medicinal Chrysanthemum Detection under Complex
 Environments Using the MC-LCNN Model. Plants,
 11(7), 838. https://doi.org/10.3390/plants11070838
- Rastegari, H., Nadi, F., Lam, S. S., Ikhwanuddin, M., Kasan, N. A., Rahmat, R. F., & Mahari, W. A. W. (2023). Internet of Things in aquaculture: A review of the challenges and potential solutions based on current and future trends. Smart Agricultural Technology, 4, 100187. https://doi.org/10.1016/j.atech.2023.100187
- Ravindran, A. A. (2023). Internet-of-Things Edge Computing Systems for Streaming Video Analytics: Trails Behind and the Paths Ahead. IoT, 4(4), 486–513. https://doi. org/10.3390/iot4040021
- Restrepo-Arias, J. F., Branch-Bedoya, J. W., & Awad, G. (2024).

 Image classification on smart agriculture platforms:

 Systematic literature review. Artificial Intelligence in Agriculture, 13, 1–17. https://doi.org/10.1016/j. aiia.2024.06.002
- Reyana, A., Kautish, S., Alnowibet, K. A., Zawbaa, H. M., & Wagdy Mohamed, A. (2023). Opportunities of IoT in Fog Computing for High Fault Tolerance and Sustainable Energy Optimization. Sustainability, 15(11), 8702. https://doi.org/10.3390/su15118702
- Rivadeneira, J. E., Borges, G. A., Rodrigues, A., Boavida, F., & Sá Silva, J. (2024). A unified privacy preserving model with AI at the edge for Human-in-the-Loop Cyber-Physical Systems. Internet of Things, 25, 101034. https://doi.org/10.1016/j.iot.2023.101034
- Rudrakar, S., & Rughani, P. (2023). IoT based Agriculture (Ag-IoT): A detailed study on Architecture, Security and Forensics. Information Processing in Agriculture, S2214317323000665. https://doi.org/10.1016/j.inpa.2023.09.002
- Sanguino Reyes, M. R. (2020). A systematic review of the literature on information technology outsourcing services. Journal of Physics: Conference Series, 1513(1), 012007. https://doi.org/10.1088/1742-6596/1513/1/012007
- Shukla, S., Thakur, S., Hussain, S., Breslin, J. G., & Jameel, S. M. (2021). Identification and Authentication in Healthcare Internet-of-Things Using Integrated Fog Computing Based Blockchain Model. Internet of Things, 15, 100422. https://doi.org/10.1016/j.iot.2021.100422
- Singh, P., Elmi, Z., Krishna Meriga, V., Pasha, J., & Dulebenets, M. A. (2022). Internet of Things for sustainable railway transportation: Past, present, and future. Cleaner Logistics and Supply Chain, 4, 100065. https://doi.org/10.1016/j. clscn.2022.100065
- Tripathy, S. S., Rath, M., Tripathy, N., Roy, D. S., Francis, J. S. A., & Bebortta, S. (2023). An Intelligent Health Care System in Fog Platform with Optimized Performance.

- Sustainability, 15(3), 1862. https://doi.org/10.3390/su15031862
- Wu, Y., Dai, H.-N., & Wang, H. (2021). Convergence of Blockchain and Edge Computing for Secure and Scalable IIoT Critical Infrastructures in Industry 4.0. IEEE Internet of Things Journal, 8(4), 2300–2317. https://doi. org/10.1109/JIOT.2020.3025916
- Xavier, R., Silva, R. S., Ribeiro, M., Moreira, W., Freitas, L., & Oliveira-Jr, A. (2024). Integrating Multi-Access Edge Computing (MEC) into Open 5G Core. Telecom, 5(2), 433–450. https://doi.org/10.3390/telecom5020022
- Yang, S., Zhang, Z., Xia, H., Li, Y., & Liu, Z. (2023). Edge Intelligence-Assisted Asymmetrical Network Control and

- Video Decoding in the Industrial IoT with Speculative Parallelization. Symmetry, 15(8), 1516. https://doi.org/10.3390/sym15081516
- Zhang, T., Li, Y., & Philip Chen, C. L. (2021). Edge computing and its role in Industrial Internet: Methodologies, applications, and future directions. Information Sciences, 557, 34–65. https://doi.org/10.1016/j.ins.2020.12.021
- Zheng, W., Wang, X., Xie, Z., Li, Y., Ye, X., Wang, J., & Xiong, X. (2024). Data management method for building internet of things based on blockchain sharding and DAG. Internet of Things and Cyber-Physical Systems, 4, 217–234. https://doi.org/10.1016/j.iotcps.2024.01.001

