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Resumen

Esta investigación trata sobre la necesidad de optimizar los sistemas de videovigilancia 
a través del uso de inteligencia artificial para detectar proactivamente amenazas.  El 
propósito primordial es desarrollar un prototipo de monitoreo inteligente que pueda 
detectar en tiempo real a personas, armas y conductas sospechosas, enfocándose en la 
eficiencia computacional y la precisión de detección para garantizar su viabilidad en 
hardware accesible. Se utilizó la metodología CRISP-DM para conseguir esta meta, 
que dividió el proyecto de manera sistemática en etapas que incluían la preparación, 
modelado y valoración de los datos.  Un modelo YOLOv8 es el elemento principal del 
sistema, el cual fue entrenado con un conjunto de datos personalizado que comprende 
cerca de 8.500 imágenes y se expandió a través de distintos métodos. La robustez del 
modelo se confirma mediante los resultados cuantitativos, que muestran una puntuación 
F1-score del 93,99% y una precisión media (mAP) de 50 del 96,97% en las clases 
especificadas. Finalmente, el modelo fue incorporado en un prototipo funcional de 
videovigilancia, lo que demostró su utilidad y efectividad operativa en entornos de 
seguridad urbana y comercial.

Palabras clave: inteligencia artificial; deep learning; YOLOv8; videovigilancia.

Abstract

This research addresses the need to optimize video surveillance systems through the use 
of artificial intelligence to proactively detect threats. The primary goal is to develop an 
intelligent monitoring prototype capable of detecting people, weapons, and suspicious 
behavior in real time, focusing on computational efficiency and detection accuracy to 
ensure its feasibility on readily available hardware. The CRISP-DM methodology was 
used to achieve this goal, systematically dividing the project into stages that included 
data preparation, modeling, and evaluation. A YOLOv8 model is the core element of the 
system, trained on a custom dataset of approximately 8,500 images and expanded using 
various methods. The model’s robustness is confirmed by quantitative results, which 
show an F1 score of 93.99% and a mean accuracy (mAP) of 96.97% in the specified 
classes. Finally, the model was incorporated into a functional video surveillance 
prototype, demonstrating its usefulness and operational effectiveness in urban and 
commercial security environments.

Keywords: artificial intelligence; deep learning; YOLOv8; video surveillance.
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1. Introduction

Con el rápido crecimiento de la Inteligencia Artificial (IA) en los 
últimos años, se han generado importantes avances en diversas 
áreas, como la de videovigilancia inteligente, donde los sistemas 
tradicionales han quedado atrás. Esto principalmente por la 
dependencia de la supervisión humana, lo que genera retrasos y 
errores en situaciones críticas. Un claro ejemplo de cómo afrontar 
estas debilidades es el desarrollo de sistemas de seguridad 
capaces de funcionar de manera automatizada y sin supervisión 
mediante modelos de detección en tiempo real basados en deep 
learning (Azatbekuly et al., 2024). Estos trabajos resaltan que, 
a diferencia de los métodos tradicionales que requieren mucha 
mano de obra para procesarlo, analizarlo y verlo, es posible 
reducir significativamente la intervención humana y mejorar la 
capacidad de respuesta ante diversos escenarios. 

La videovigilancia apoyada con IA se ha desplegado en escenarios 
muy variados, no únicamente se limita a ciudades. En el ámbito 
agrícola, se han creado plataformas que tienen la capacidad de 
monitorear e identificar plagas en los cultivos automáticamente 
con un 92% de precisión (Delwar et al., 2025). Un sistema de 
vigilancia para una mina de carbón en el sector minero se ha 
puesto en marcha; un estudio reciente demuestra que este tipo 
de sistemas es capaz de identificar la existencia de individuos 
en zonas peligrosas y restringidas, con una tasa de precisión 
impresionante del 99.5%, lo que deja claro su eficacia aun en 
situaciones operativas extremas (Ni et al., 2024). Al mismo 
tiempo, se han creado sistemas semejantes en el sector educativo 
para detectar comportamientos anormales, como conflictos 
físicos y actos de deshonestidad académica. Estas tecnologías 
innovadoras han alcanzado un grado de exactitud del 96%, lo 
que demuestra que pueden proporcionar una respuesta precisa y 
optimizar las medidas de seguridad en los espacios universitarios 
(Gawande et al., 2024). Estos ejemplos demuestran que la IA 
puede ayudar a la seguridad de manera confiable y flexible 
cuando se utiliza en videovigilancia. 

YOLOv8 es un instrumento ideal para sistemas de vigilancia 
en tiempo real debido a su balance sobresaliente entre precisión 
y velocidad de procesamiento. Su eficacia se ha comprobado 
a través de múltiples investigaciones empíricas. Por ejemplo, 
este modelo se ha empleado para identificar armas de fuego y 
monitorizar conductas sospechosas en la práctica, logrando un 
92.2% de precisión con una Intersección sobre Unión de 0.6 
(Schcolnik-Elias et al., 2023). En consecuencia, otros estudios 
resaltan que YOLOv8 mantiene un rendimiento constante 
incluso en situaciones adversas. Por ejemplo, se ha confirmado 
que el mAP@50 alcanzó un 89% y los FPS fueron más de 
430 en situaciones con una alta afluencia, lo cual evidencia su 

efectividad (Hua et al., 2024). En espacios con una alta densidad 
de población, también se ha verificado la precisión y viabilidad 
de este modelo en tiempo real, alcanzando un F1-score de 94.7% 
(Nasir et al., 2025). 

Se ha estudiado, además de la detección de armas, la capacidad 
de esta arquitectura de detección para identificar ciertas 
acciones que despiertan sospechas y para contar personas, 
con el objetivo de comprobar su efectividad en situaciones de 
vigilancia por video. Se han creado sistemas que pueden detectar 
circunstancias como la presencia de armas o humo en lugares 
públicos, logrando niveles de precisión por encima del 95% y 
emitiendo alertas automáticas en tiempo real (Sudharson et al., 
2023). De manera similar, se han introducido mejoras ligeras 
a la arquitectura base mediante módulos como soft-NMS y 
GSConv, obteniendo un 88.6% de precisión en videovigilancia 
de campus (Cheng et al., 2024). Además, se ha tratado el asunto 
de detectar objetos pequeños en imágenes aéreas captadas por 
drones. Para lograrlo, se ha sugerido el modelo SOD-YOLO, 
una versión perfeccionada de la estructura original que superó 
al YOLOv8l (Li et al., 2024) en un 7.7% del mAP@50. Esta 
perspectiva muestra que el detector sigue siendo eficaz, a pesar 
de los escenarios complicados que se observan en las imágenes 
aéreas obtenidas por drones.

El modelo YOLOv8, a diferencia de versiones previas como 
YOLOv5, YOLOv6 y YOLOv7, brinda progresos significativos 
en cuanto a la velocidad de inferencia, precisión y capacidad de 
generalización. Estas optimizaciones derivan de su estructura sin 
anclajes, la combinación más eficaz de atributos y los métodos de 
entrenamiento más sofisticados. Según otros análisis, YOLOv8 
logró un 98% en F1-score y un 99% de precisión, lo que 
significa que superó ampliamente los resultados de YOLOv6 y 
YOLOv7 con 92% (Delwar et al., 2025). Por otro lado, el F1-
score fue del 94.7% frente al 69% de YOLOv5 (Nasir et al., 
2025). Estas pruebas respaldan el uso de esta arquitectura en 
esta investigación, ya que ofrece un equilibrio perfecto entre la 
eficacia y la velocidad de detección en tiempo real.

Es importante destacar que, aunque los avances más recientes 
muestran progresos notables en las métricas de precisión, la mayor 
parte de estos estudios no abordan el coste computacional y los 
requerimientos de hardware para la inferencia en tiempo real. El 
enfoque principal ha sido aumentar la precisión, frecuentemente 
suponiendo que se utilizan unidades de procesamiento gráfico de 
gama alta que no son económicamente factibles para la mayoría 
de las implementaciones de seguridad urbana o comercial. 
Esta disparidad entre la factibilidad práctica en hardware 
accesible y la exactitud teórica representa un reto crítico sin 
resolver. El principal problema que motivó este estudio radica 
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entiende el dominio hasta que se valida el prototipo final. Durante 
estas etapas, se usaron herramientas específicas: Roboflow 
Universe para la recopilación y gestión del dataset; Python 
3.11 para el procesamiento y preparación de datos; YOLOv8 
en PyTorch para la fase de modelado; y Matplotlib para la 
visualización y evaluación de resultados. En última instancia, se 
emplearon Angular y Python (Flask) para desarrollar el frontend 
y el backend del prototipo, respectivamente; esto asegura una 
integración eficaz entre la interfaz de monitoreo y la inferencia 
del modelo.

	

El objetivo de esta etapa fue identificar las principales restricciones 
operativas de los sistemas tradicionales de videovigilancia y 
determinar la funcionalidad necesaria para crear un sistema 
inteligente de monitoreo. La fatiga, la distracción y las 
diferencias en la interpretación de los sucesos son ejemplos de 
factores humanos que impactan negativamente en el desempeño 
efectivo de la supervisión. De ahí surgió la necesidad de crear un 
sistema automatizado que tenga la capacidad de identificar armas 
y personas en tiempo real, aplicar normas contextuales para 
detectar conductas sospechosas y lanzar alertas automáticas. Esta 
perspectiva apunta a disminuir la dependencia de la supervisión 
manual, perfeccionar la exactitud en las detecciones y optimizar 
la capacidad de respuesta frente a incidentes en contextos urbanos 
y de seguridad privada.

Durante esta etapa se analizó el contexto operacional de la 
seguridad urbana y se documentaron fallas asociadas a la 
vigilancia sostenida: fatiga del operador, variabilidad en la 
interpretación de la escena y retrasos en la verificación de eventos, 
que conducen a falsos positivos y omisiones. Estudios recientes 
demuestran que, a medida que aumenta el número de pantallas 
a supervisar, el rendimiento del operador disminuye debido a 
la sobrecargar visual. Stainer et al. (2021) demostraron que, en 
entornos de videovigilancia con varias cámaras, los operadores 
presentan mayores tiempos de reacción y retrasos en la detección 
de eventos críticos. Como se observa en la Figura 2, el monitoreo 

no solo en la limitada capacidad de los sistemas tradicionales 
de videovigilancia para detectar en tiempo real actividades 
sospechosas o la presencia de objetos peligrosos, sino también 
la ausencia de soluciones de inteligencia artificial validadas que 
mantengan un equilibrio entre una gran precisión y la eficiencia 
computacional requerida para su implementación en hardware 
económico. A partir de esta situación, surge la siguiente pregunta 
de investigación: ¿Cómo puede un sistema de videovigilancia 
inteligente basado en deep learning alcanzar al menos un 90% 
de precisión en la detección en tiempo real de personas, armas y 
actividades sospechosas?.

El objetivo general de este trabajo fue desarrollar un prototipo 
funcional de monitoreo inteligente capaz de detectar en tiempo 
real personas, armas y personas armadas utilizando un modelo 
basado en deep learning. De este se derivan los objetivos 
específicos: (1) construir un conjunto de datos personalizado 
que integre imágenes de personas, armas y personas armadas, 
aplicando técnicas de preprocesamiento y aumentación de datos; 
(2) entrenar y optimizar un modelo YOLOv8 mediante transfer 
learning para lograr altos niveles de precisión, recall, F1-score 
y mAP; y (3) integrar el modelo en un prototipo funcional de 
videovigilancia capaz de procesar video en tiempo real, emitir 
alertas basadas en reglas contextuales y validar su rendimiento 
mediante métricas cuantitativas y pruebas experimentales en 
entornos simulados y reales. Para alcanzar estos objetivos, se 
adoptó la metodología Cross-Industry Standard Process for Data 
Mining (CRISP-DM), estructurada en seis fases que guiaron de 
manera ordenada el desarrollo del sistema, desde la comprensión 
del problema y la preparación de datos hasta el modelado, la 
evaluación y la implementación final del prototipo.

El artículo está organizado de la siguiente forma: en la Sección 2 
se describen los materiales y métodos, en la Sección 3 se presentan 
los resultados y se discuten los hallazgos en relación con estudios 
anteriores, y en la Sección 4 se exponen las conclusiones y las 
futuras líneas de investigación.

2. Materiales y Métodos

El estudio fue llevado a cabo con la metodología CRISP-DM, 
que brinda una estructura ordenada para la creación de proyectos 
de análisis y modelaje de datos. Esta metodología fue escogida 
debido a su flexibilidad y a su habilidad para adecuarse a procesos 
iterativos, lo que posibilita hacer correcciones o volver atrás 
entre fases de acuerdo con los resultados alcanzados en cada 
etapa del desarrollo. El modelo CRISP-DM sigue siendo uno de 
los métodos más utilizados en iniciativas que se fundamentan 
en minería de datos y aprendizaje automático, gracias a su 
versatilidad y enfoque práctico, lo cual lo hace apropiado para 
contextos reales donde son esenciales la mejora permanente y la 
validación (Acuña-Cid et al., 2025).

En este trabajo, se utilizó CRISP-DM en seis etapas esenciales, 
como se observa en la Figura 1. Esta metodología sirvió de 
orientación para organizar el flujo del proyecto desde que se 
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Figura 1. Metodología CRISP-DM.
Fuente: Los autores.

https://doi.org/10.33936/isrtic.v9i2.7908
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


Revista de Tecnologías de la Informática y las Comunicaciones

https://revistas.utm.edu.ec/index.php/informaticaysistemas/index

DOI: 10.33936/isrtic.v9i2.7908

Revista de Tecnologías de la Informática
y las Comunicaciones

Informática y Sistemas

Facultad de Ciencias Informáticas
Universidad Técnica de Manabí

Av. Urbina y Che Guevara, Portoviejo, Ecuador
revista.iys@utm.edu.ec

e-ISNN 2550-6730      Vol. 9, Núm. 2 (197-213): Julio-Diciembre, 2025

con una sola cámara genera tiempos de respuesta más cortos y 
precisos, mientras que el monitoreo de cuatro cámaras incrementa 
el retraso de detección de eventos sospechosos.

A partir de este diagnóstico se establecieron los siguientes 
criterios base para el desarrollo del sistema:

• R1: Identificación automática de armas y personas sin la 
intervención de seres humanos.

• R2: Disminución del tiempo de respuesta ante situaciones 
sospechosas.

• R3: Generación automática de alertas bajo condiciones 
preestablecidas.

• R4: Operación estable en tiempo real con un margen de error 
mínimo.

El resultado de esta etapa permitió definir las características 
del conjunto de datos, lo que sirvió de punto de partida para la 
siguiente fase.

Fase 2: Comprensión y recopilación de los datos

Los requisitos y criterios para el conjunto de datos que se requiere 
para entrenar el modelo de detección fueron determinados en esta 
etapa.  La labor fundamental fue reunir imágenes que ilustraran 
la variedad de situaciones que un sistema de videovigilancia 
podría afrontar, teniendo en cuenta diferentes circunstancias, 
tales como las condiciones operativas, los ángulos de cámara y 
la iluminación.

Se eligieron imágenes que satisficieran tres requisitos 
principales: (1) la presencia evidente de las clases objetivo, 
es decir, persona, arma y persona armada; (2) una calidad 

visual adecuada para anotar los objetos con precisión; y (3) la 
no existencia de distorsiones o marcas de agua que pudieran 
interferir con el entrenamiento. Se eliminaron las imágenes 
que tenían baja resolución, que se repetían o que presentaban 
etiquetas inconsistentes como se observa en la Figura 3.

Para la construcción del dataset personalizado, se utilizaron 
tres repositorios de Roboflow Universe: el primero, “Armed 
Person Recognition Dataset” contiene más de 7,000 imágenes 
de personas armadas y fue elegido por su enfoque en detectar 
amenazas directas en entornos urbanos, el segundo tomado de 
“Personas with Weapons Dataset” que incluye 6,600 imágenes 
de personas portando armas, ideal para identificar situaciones 
de riesgo y finalmente, “Weapon Detection Dataset” ofrece más 
de 12000 imágenes etiquetadas con diferentes tipos de armas, 
permitiendo al modelo reconocer objetos peligrosos. 

Se llevó a cabo un análisis de las variables principales que 
influyen en el rendimiento de los modelos de detección en 
la videovigilancia con el fin de caracterizar objetivamente 
la diversidad del conjunto de datos. La Tabla 1 resume la 
distribución aproximada de imágenes en función de cada 
variable por separado, sobre un total de aproximadamente 8,500 
imágenes recolectadas.

Esta distribución demuestra que el conjunto de datos incluye 
combinaciones complejas de condiciones operativas, lo cual 
permite que el modelo esté expuesto a situaciones que representan 
escenarios verdaderos de videovigilancia. La inclusión de 
situaciones difíciles como la baja iluminación, ángulos extremos, 
oclusiones severas asegura que el sistema entrenado sea capaz 
de generalizar frente a las condiciones cambiantes que suelen 
ocurrir en los ambientes comerciales y urbanos.

Para eliminar los duplicados y garantizar la coherencia en la 
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Figura 2. Variación del tiempo de respuesta ante tareas de 
videovigilancia

Fuente: Tomado de Stainer et al. (2021). Figura 3. Ejemplos de imágenes del dataset en Roboflow.
Fuente: Dataset completo de Erreyes (2025).

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://revistas.utm.edu.ec/index.php/Informaticaysistemas/index
https://doi.org/10.33936/isrtic.v9i2.7908
mailto:revista.iys%40utm.edu.ec?subject=


Prototipo de Sistema de Monitoreo Inteligente para la detección en Tiempo Real de Objetos y Actividades Sospechosas ... 

DOI: 10.33936/isrtic.v9i2.7908e-ISNN 2550-6730

Erreyes Cuenca, L., Olmedo Chica, N., Zea Ordóñez, M. & Loja Mora, N.

Revista de Tecnologías de la Informática y las Comunicaciones
Informática y Sistemas

     Vol. 9, Núm. 2 (197-213): Julio-Diciembre, 2025

distribución de las clases, el conjunto de datos fue revisado 
manual y automáticamente antes del entrenamiento. Para prevenir 
sesgos de aprendizaje, se mantuvo un balance proporcional entre 
las categorías más importantes: persona, arma y persona armada. 
Asimismo, se examinó la congruencia entre las etiquetas y los 
objetos visibles para asegurar que el dataset final fuera de calidad.

El conjunto de datos recopilados fue organizado en tres 
subconjuntos principales: entrenamiento, validación y prueba, 

con el fin de garantizar una evaluación adecuada. La Tabla 2 
muestra la distribución de las instancias por clase, evidenciando 
un balance entre categorías de persona, arma y persona armada.

La división se realizó utilizando la proporción 8:1:1 (80% 
entrenamiento, 10% validación y 10% prueba), asegurando la 
distribución equilibrada de clases en cada subconjunto. Esta 
estructura fue seleccionada en base a referencias metodológicas 
previas, como la proporción 7:2:1 de Ni et al. (2024) aplicados 
en entornos subterráneos y el esquema 3:1 (75% entrenamiento 
y 25% validación) del trabajo de Delwar et al. (2025) para 
proyectos en entornos de agricultura. De esta manera, optar 
por la proporción 8:1:1 nos dispone de suficientes datos para 

el entrenamiento, con el fin de reducir el riesgo del underfitting 
(subajuste), y al mismo tiempo reservar datos de validación y 
prueba que actúan frente al overfitting (sobreajuste) garantizando 
una evaluación imparcial del rendimiento.

Este análisis se basa en los principios de la IA responsable, que 
valoran ante todo la transparencia, la equidad y la protección de 
datos. Al elegir y preparar el conjunto de datos, se pusieron en 
práctica acciones destinadas a salvaguardar la privacidad y reducir 
los peligros de sesgos algorítmicos. Según Castro-Paredes et al. 
(2025),es preciso incluir la protección de datos desde el diseño 
original del sistema y restringir la recopilación de datos a lo que 
sea estrictamente necesario. En este contexto, se eliminaron los 
metadatos identificativos y se comprobó que las imágenes fueran 
obtenidas de repositorios públicos como Roboflow Universe, 
los cuales tienen licencias abiertas para la investigación y el 
uso académico. De acuerdo con los términos establecidos por 
sus creadores, se utilizaron las colecciones de datos elegidas 
sin alterar el contenido original más allá de las operaciones de 
aumento. Se respetaron los principios de privacidad y el uso 
ético de datos al no incluir información personal ni metadatos 
que pudieran revelar la identidad de personas.

Además, se abordó la advertencia de Alvarado & Villavicencio 
(2024) sobre cómo los algoritmos de aprendizaje automático 
pueden heredar y aumentar los sesgos que ya existen en los 
datos con los que son entrenados. Para evitar la discriminación 
algorítmica, se documentó la diversidad del conjunto de datos 
en cuanto a iluminación, ángulos de cámara y contextos 
operativos, como se muestra en la Tabla 1. Esta caracterización 
posibilitó confirmar que el conjunto de datos no tuviera una 
sobrerrepresentación de condiciones particulares que pudieran 
inducir sesgos en el modelo final. El conjunto de datos se empleó 
solamente para validar y desarrollar modelos de detección 
orientados a la seguridad pública y privada.

Fase 3: Preparación de los datos

Después de etiquetar el conjunto de datos, se empezó a preparar 
el dataset para el entrenamiento con la finalidad de optimizar 
la habilidad de generalización ante cambios comunes en 
videovigilancia como las variaciones en la iluminación, en los 
ángulos de cámara, oclusiones parciales y escalas disímiles. La 
elección de las técnicas de aumentación se llevó a cabo teniendo 
en cuenta la problemática concreta que son las personas, armas y 
personas armadas, dándole prioridad a los cambios que aporten 
alteraciones realistas sin menoscabar el significado de las escenas 
ni la forma exterior de objetos pequeños.

Las modificaciones geométricas como la perspectiva, rotación, 
traslación, escala, shear y mosaico persiguen una solidez tanto 
espacial como multi-escala; los cambios en HSV se ocupan de la 
variabilidad luminosa propia de interiores y exteriores; el mixup 
y el copy-paste atenuan los límites de decisión y elevan las co-
ocurrencias, lo que disminuye el sobreajuste. Las probabilidades 
se establecieron para mantener un equilibrio entre la fidelidad 
y la diversidad: son elevadas cuando la transformación 
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Tabla 1. Caracterización de la diversidad del dataset según 
variables operativas.
Fuente: Los autores.

Tabla 2. Composición del Conjunto de Datos.
Fuente: Los autores.

Características Categorías Imágenes aproximadas

Iluminación

Alta 3,600

Media 3,200

Baja 1,700

Ángulo de cámara

Frontal (0-30°) 3,800

Oblicuo (30-60°) 3,000

Cenital (>60°) 1,700

Interior comercial 4,500

Contexto operativo

Urbano exterior 2,500

Mixto/residencial 1,500

1 persona/arma 3,400

Densidad de objetos

2-5 objetos 3,600

Más de 5 objetos 1,500

Sin oclusión 4,000

Oclusiones
Oclusión parcial 3,200

Oclusión severa 1,300

Clase Entrenamiento Validación Prueba

Persona 8,176 857 893

Arma 9,018 888 964

Persona armada 7,030 758 758
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reproduce condiciones comunes como el volcado horizontal, 
y moderadas o bajas cuando hay peligro de agregar ruido 
principalmente en mixup o copy-paste. La Tabla 3 resume cada 
técnica de aumentación aplicada, su propósito, los parámetros 
probabilísticos y el efecto esperado sobre la generalización del 
modelo.

Estas estrategias se aplicaron para equilibrar las clases y aumentar 
la diversidad del conjunto de datos, siguiendo enfoques similares 
a los reportados por Espinoza et al. (2025), quienes evidencian 
que el incremento controlado de la variabilidad de las muestras 
contribuye a una mejor generalización de los modelos.

Para garantizar la coherencia y compatibilidad con el modelo 
elegido, se realizaron las siguientes acciones preliminares:

• Todas las imágenes fueron ajustadas a una resolución estándar 
de 640 × 640 píxeles, para mantener un equilibrio entre precisión 
y velocidad de inferencia.

• Se verificó que las imágenes estuvieran en formato .jpg, 
y las etiquetas asociadas en archivos .txt con coordenadas 
normalizadas de los bounding boxes.

El proceso de anotación de datos se realizó a través de la 
plataforma Roboflow Universe, la cual facilitó la visualización y 
edición gráfica de las etiquetas mediante una interfaz que permite 
delimitar los objetos con bounding boxes de distintos colores, 
como se observa en la Figura 4.

Las imágenes provinieron de los repositorios seleccionados 
fueron previamente etiquetados por sus autores originales; sin 
embargo, fue necesario revisar y ajustar manualmente algunas 
anotaciones, corrigiendo nombres de clases y coordenadas de los 
bounding boxes para garantizar la coherencia y precisión de las 
etiquetas. Este proceso permitió mantener la consistencia entre 
las clases “persona”, “arma” y “persona armada”, asegurando un 
formato estandarizado compatible con YOLOv8.

Se llevó a cabo una revisión mixta, automática y manual de la 
totalidad de los datos con el fin de asegurar que las etiquetas 
fueran coherentes y que las clases estuvieran correctamente 
asignadas. Para detectar errores de formato, clases no definidas 
y coordenadas que exceden el rango normalizado, se utilizaron 
scripts de validación en la verificación automática. Además, se 
realizó una revisión manual a través de la plataforma Roboflow, 
que permite ver y editar directamente las etiquetas en cada 
imagen. Esta herramienta posibilitó verificar la exactitud de 
los bounding boxes y rectificar potenciales inconsistencias 
o superposiciones en las clases objetivo. En total, se examinó 
manualmente alrededor del 10 % de los datos totales para 
garantizar la coherencia semántica y visual de las anotaciones 
antes de que el modelo comenzara su entrenamiento.

202

Técnica Objetivo Probabilidad Efecto esperado

Mosaic
Diversidad de 
contextos y escalas 
simultáneas

p = 0.5
Mejor detección 
multi-escala; menor 
sobreajuste.

MixUp Suavizar fronteras 
de decisión p = 0.1

Mayor robustez 
a oclusiones/
ruido; Clases más 
separables.

Volteo 
horizontal

Invariancia a 
orientación lateral p = 0.5

Generalización a 
distintos direcciones 
de movimiento.

Rotación Tolerancia a 
inclinaciones leves

Hasta 10° 
(aleatoria)

Estabilidad ante 
cámaras no 
niveladas.

Traslación Robustez a 
encuadres variables Hasta 20%

Menor sensibilidad 
a reencuadres del 
objeto.

Escalado Robustez multi-
escala Hasta 50%

Mejora detección de 
objetos pequeños/
grandes.

Shear Variación 
geométrica sutil 2°

Mejora frente a 
distorsiones por 
perspectiva.

Perspectiva 
leve

Simular cámaras 
en altura

Aleatoria, 
leve

Mejor desempeño 
en CCTV montado 
en techos/paredes.

Ajuste 
HSV

Variabilidad de 
iluminación/color

Deltas 
aleatorios

Robustez a 
interiores/exteriores 
y sombras.

Copy-Paste
Aumentar co-
ocurrencias y 
densidad

p = 0.2

Más ejemplos 
“persona armada”; 
mejora recall sin 
sobre rotular.

Tabla 3. Técnicas de aumentación de datos y sus parámetros 
aplicados.

Fuente: Los autores.

Figura 4. Interfaz de anotación de clases en Roboflow.
Fuente: Los autores.
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Fase 4: Modelado

En esta fase se realizó el entrenamiento del modelo YOLOv8 
usando el conjunto de datos preparado en su totalidad. Se 
configuraron los hiperparámetros más importantes como el 
número de épocas, el tamaño de lote y la tasa de aprendizaje, 
el fin de esto es la optimización del proceso de aprendizaje y no 
tener un sobreajuste innecesario. Se implementaron métodos de 
validación y modificaciones dinámicas en la tasa de aprendizaje 
a lo largo del entrenamiento para mejorar el proceso de detección 
y estabilizar el aprendizaje del modelo.

Se utilizó el modelo YOLOv8 en dos versiones para el 
entrenamiento la versión nano (YOLOv8n) y la versión small 
(YOLOv8s). La versión estándar YOLOv8 no se seleccionó 
porque YOLOv8s la supera en velocidad y rendimiento. Las dos 
versiones fueron elegidas con el propósito de valorar la eficacia 
en cuanto a rapidez de inferencia y precisión, buscando así hallar 
la mejor relación entre eficiencia y exactitud para un despliegue 
viable en hardware accesible y de bajo costo.

• YOLOv8n: Se optó por esta versión más liviana al principio 
porque necesita menos recursos computacionales, lo que la hace 
perfecta para aplicaciones en tiempo real que demandan un uso 
reducido de memoria y capacidad de procesamiento.

• YOLOv8s: Es un modelo más sólido que logra optimizar la 
capacidad de generalización y precisión, a la vez que mantiene 
una latencia apropiada para labores de videovigilancia en 
sistemas con recursos computacionales limitados.

El modelo se desarrolló, entrenó y evaluó en un entorno local 
de alto rendimiento, equipado con una GPU NVIDIA RTX 2050 
4 GB VRAM, adecuada para tareas de detección en tiempo 
real mediante deep learning. El sistema operativo utilizado 
fue Windows 11 Pro, con 16 GB de memoria RAM y un 
almacenamiento SSD de 1 TB, lo que permitió una ejecución 
fluida del entrenamiento y validación del modelo YOLOv8s. El 
lenguaje principal de programación fue Python 3.11, utilizando 
la librería Ultralytics YOLOv8 basada en PyTorch. Todo el 
desarrollo fue gestionado en el entorno de trabajo Visual Studio 
Code, que facilito la integración de scripts, pruebas y gestión de 

dependencias durante el proceso de experimentación.

La configuración de hiperparámetros constituye un elemento 
clave para el rendimiento del modelo, ya que determina tanto 

la estabilidad como la capacidad de generalización del sistema. 
Los valores utilizados en esta investigación están especificados 
en la Tabla 4; fueron seleccionados para asegurar un rendimiento 
equilibrado del modelo y una inferencia apropiada en tiempo 
real.

El entrenamiento del modelo se realizó en el entorno local descrito 
anteriormente, aprovechando la GPU para acelerar los cálculos 
de propagación hacia adelante y hacia atrás. En la Figura 5 se 
muestra un fragmento del registro de un entrenamiento, donde se 
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Tabla 4. Configuración de Hiperparámetros.
Fuente: Los autores.

Figura 5. Registro del proceso de entrenamiento del modelo YOLOv8s durante 100 épocas.
Fuente: Los autores.

Parámetro Prueba 1 
(YOLOv8n)

Prueba 2 
(YOLOv8s)

Prueba 3 
(YOLOv8s)

Prueba 4 
(YOLOv8s)

Modelo 
base YOLOv8n YOLOv8s YOLOv8s YOLOv8s

Épocas 50 75 100 100

Batch size 16 8 12 12

Learning 
rate (lr0) 0.001 0.001 0.0008 0.0005

Learning 
rate (lrf) 0.0002 0.0002 0.00016 0.0001

Warmup 
epochs 3 3 5 5

Weight 
decay 0.0005 0.0005 0.0005 0.0005

Mosaic 0.3 0.4 0.5 0.5

Mixup 0.0 0.05 0.1 0.1

Copy-paste 0.0 0.1 0.15 0.2

Cosine LR No Sí Sí Sí

Optimizer SGD AdamW AdamW AdamW

Caché RAM RAM Disk Disk

AMP 
(Mixed 

Precision)
Sí Sí Sí Sí
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evidencian las perdidas progresivas. El flujo de trabajo incluyó:

• Inicialización del modelo con pesos preentrenados (transfer 
learning) aprovechando el conocimiento previo en tareas de 
detección general y ajustarlo al conjunto de datos específico 
(fine-tuning).

• Carga del dataset preprocesado y organizado en las carpetas 
train/, val/ y test/, utilizando el módulo YOLODataset de la 
librería Ultralytics.

• Ejecución de ciclos de entrenamiento durante 100 épocas, 
aplicando el algoritmo AdamW para actualizar los parámetros 
de la red.

• Monitoreo en tiempo real de métricas clave como:

- Box loss: error asociado a la precisión de las coordenadas de 
los bounding boxes.

- Class loss: error en la clasificación de las detecciones.

- Objectness loss: error en la predicción de la existencia de 
objetos.

El entrenamiento se realizó con un tiempo total aproximado de 
entre 4 a 6 horas. El tiempo medio por época fue de cerca de 4 
minutos. La resolución de las imágenes empleadas fue 640×640 
píxeles, y el consumo de memoria GPU osciló entre 2.8 GB y 3.63 
GB, dependiendo del tamaño de los lotes y las configuraciones 
particulares de cada versión.

Fase 5: Evaluación

La evaluación de los modelos se realizó utilizando un subconjunto 
de pruebas que equivale al 10% del conjunto de datos original, 
conformado por imágenes no utilizadas durante la fase de 
entrenamiento ni validación. Este conjunto de pruebas incluyó:

• Aproximadamente 700 imágenes distribuidas proporcionalmente 
entre las clases persona, arma y persona armada.

• Escenarios variados con diferente iluminación, ángulos de 
cámara y densidad de objetos, representando condiciones 
operativas reales.

La Tabla 5 presenta un resumen de estas métricas, que incluyen la 
precisión y el recall como indicadores básicos, el F1-score como 
equilibrio entre ambas y los valores de mAP@50 y mAP@50-
95 como referencias utilizadas para cuantificar la calidad de 
detección bajo diferentes umbrales.

Las herramientas de YOLOv8 calculan de manera automática 

las métricas de evaluación mientras se validaba el modelo. Los 
resultados de estas métricas se obtienen del entrenamiento y se 
guardan en la carpeta de resultados del conjunto de datos de 
test. Las funciones de metrics.py, que son parte del framework 
de YOLOv8, se emplean para calcular las métricas. Las mismas 
que se adquieren directamente de las estimaciones hechas en el 
conjunto de datos de prueba, sin el uso de herramientas externas.

Fase 6: Despliegue

La fase de despliegue implicó la incorporación del modelo 
YOLOv8s en un prototipo funcional que era capaz de funcionar 
en tiempo real. Este sistema tiene la habilidad de procesar flujos 
de video, detectar objetos y lanzar alertas en tiempo real al 
descubrir acciones sospechosas como la presencia de individuos 
armados en áreas restringidas.

El modelo que se entrenó fue extraído del ambiente de 
entrenamiento y añadido a un prototipo de sistema de vigilancia 
por video, que fue creado con OpenCV y Python, empleando las 
capas siguientes:

Capa de datos: Cámaras IP o locales que, por medio del 
protocolo RTSP/IP, graban video en tiempo real y transmiten 
fotogramas de video para su procesamiento.

Capa de Backend:

• Detección de objetos: Para la detección en tiempo real, 
YOLOv8 es el componente esencial.

• Servicios RESTful: Flask v2.0 es la herramienta que se utiliza 
para administrar los servicios de backend; esta posibilita que el 
modelo de detección y el frontend se comuniquen entre sí.
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Métrica Descripción

Precisión (Precision) Proporción de verdaderos positivos sobre todas 
las predicciones positivas realizadas.

Recall (Sensibilidad) Proporción de verdaderos positivos correctamen-
te identificados sobre todas las instancias reales.

F1-Score Media armónica entre precisión y recall, útil 
para medir el balance entre ambas métricas.

mAP@50
Media de precisión considerando un umbral de 
IoU=0.5, estándar en la comunidad de visión por 
computador.

mAP@50–95
Media de precisión sobre múltiples umbrales 
de IoU (0.5 a 0.95 con pasos de 0.05), para una 
evaluación más rigurosa.

Tabla 5. Métricas de Evaluación.
Fuente: Los autores.
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• Comunicación en tiempo real: Para garantizar una 
comunicación eficaz entre el frontend y el backend, se emplean 
WebSockets.

• Envío de alertas: Para la transmisión de alertas de amenaza o 
intrusión a los usuarios, se emplea la API v3 de Mailgun.

Capa de Frontend:

• Interfaz de usuario interactiva: Creada con Angular v12, 
posibilita la visualización en tiempo real del estado del sistema 
y de las detecciones.

• Recepción en tiempo real: Las alertas y la información de las 
cámaras llegan al frontend a través de WebSockets.

• Estructura y diseño UI: Se utiliza HTML/CSS para el diseño 
de la interfaz, con el fin de brindar una experiencia eficaz y 
amigable.

Diagrama de arquitectura tecnológica

El diagrama de la arquitectura tecnológica del sistema, que refleja 
las capas del software, la comunicación entre los componentes y 
el flujo de datos se ilustra en la Figura 6.

La Figura 7 presenta en detalle la arquitectura del prototipo, que 
muestra el funcionamiento del flujo de integración del modelo, 
desde que se captura el video en tiempo real hasta que se procesa 
con YOLOv8s y se clasifican las amenazas. Los resultados 
se almacenan en la parte trasera del sistema, se muestran en 
una página web y, si se identifican riesgos, el sistema notifica 
automáticamente al usuario.

Requerimientos de hardware y tiempo promedio de respuesta

El sistema de videovigilancia en tiempo real está creado para 

funcionar con eficiencia elevada.  Los requisitos mínimos de 
hardware y el promedio del tiempo de respuesta se describen a 
continuación:

Hardware:

• GPU: GeForce GTS 450/Radeon HD 6850, apropiada para el 
procesamiento de los modelos de detección en tiempo real.

• Memoria RAM: Se recomienda 8 GB de RAM para optimizar 
la carga de trabajo del sistema.

• CPU: Un procesador Intel Core i3 o similar para asegurar el 
procesamiento eficiente de los flujos de video.

Tiempo promedio de respuesta global:

• Captura y procesamiento de frames: El tiempo total 
por imagen es de aproximadamente 30 ms, lo cual incluye 
el preprocesamiento de 0.5 ms, la inferencia de 22 ms y el 
posprocesamiento de 7.5 ms.

Pruebas de usabilidad y validación funcional

Se llevaron a cabo pruebas de usabilidad y validación funcional, 
que integraron análisis cualitativos y mediciones cuantitativas, 
con el fin de determinar cuán eficiente es el sistema para detectar 
amenazas, sobre todo en cuanto a la identificación de personas 
armadas. Para evaluar la eficacia de las alertas en tiempo real, la 
facilidad de uso y la habilidad del sistema para mostrar imágenes 
de varias cámaras al mismo tiempo, los usuarios utilizaron la 
interfaz. Además, se llevaron a cabo exámenes funcionales con 
diez videos representativos de distintos contextos operativos 
que contenían variaciones en iluminación, ángulos de cámara 
y presencia de personas armadas y desarmadas. El objetivo era 
evaluar el desempeño del sistema en relación con falsos positivos 
y falsos negativos. Se utilizaron medidas estándar de visión por 
computadora, tales como precisión, mAP@50, mAP@50–95, 
recall y F1-score para medir su rendimiento. Los resultados 
obtenidos posibilitaron la confirmación de que el prototipo es 
robusto en situaciones adversas y controladas.

Consideraciones éticas y legales del sistema

El uso de tecnologías de videovigilancia inteligente conlleva 
responsabilidades legales y éticas que necesitan ser atendidas 
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Figura 6. Arquitectura tecnológica del Prototipo.
Fuente: Los autores.

Figura 7. Arquitectura del Prototipo.
Fuente: Los autores.
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explícitamente. Se utilizaron videos que se obtuvieron de fuentes 
públicas disponibles en plataformas como YouTube y sitios web 
de medios noticiosos, los cuales correspondían a circunstancias 
reales de robos e incidentes de seguridad registrados por cámaras 
de videovigilancia, durante la fase de validación experimental. 
Estos materiales fueron empleados solamente con propósitos 
académicos y de investigación, sin procesar datos biométricos 
identificables ni guardar información personal. Según Castro-
Paredes et al. (2025), en Ecuador, la Ley Orgánica de Protección 
de Datos Personales define principios esenciales para el manejo 
de datos personales, como son la transparencia, el consentimiento 
informado y la reducción de datos.

3. Resultados y Discusión

Resultados Cuantitativos

Tras completar el proceso de entrenamiento y validación de las 
distintas configuraciones de YOLO, fue necesario establecer un 
criterio objetivo para determinar cuál de los modelos presentaba 
el mejor desempeño. Para ello, se recurrió a un conjunto de 
métricas ampliamente utilizadas en visión por computadora, 
que permiten medir no solo la precisión de las detecciones, sino 
también la capacidad del sistema para reconocer correctamente 
las clases definidas bajo diferentes condiciones. Estas métricas 
proporcionan una base cuantitativa sólida para comparar los 
resultados obtenidos en cada prueba y respaldar la selección final 
del modelo que será implementado en el prototipo de monitoreo 
inteligente.

Se evaluó el rendimiento de los modelos usando métricas estándar 
en visión por computador, las cuales fueron calculadas con base 
en las matrices de confusión producidas en cada contexto de 
prueba:

Precisión (Precision): calcula el porcentaje de verdaderos 
positivos en relación con todas las predicciones positivas.

	 P = TP / (TP + FP)	 (1)

Sensibilidad (Recall): señala la relación entre la cantidad de 
verdaderos positivos que se han identificado correctamente y el 
total de casos reales.

	 R = TP / (TP + FN)		  (2)

F1-Score: es la media armónica de las medidas de precisión y 
de recall.

	 F1 = 2 × (P × R) / (P + R)		  (3)

mAP@50: promedio de precisión que tiene en cuenta un límite 
de IoU igual a 0.5.

	 mAP@50 = (1/N) × Σ APᵢ   con IoU ≥ 0.5	 (4)

mAP@50-95: media de la precisión en varios límites de IoU.

mAP@50-95 = (1/10) × Σ APₜ   con 0.5 ≤ IoU ≤ 0.95,paso 0.05

						      (5)

Donde:

• TP (True Positives): cantidad de casos que se ha clasificado 
correctamente como positivos.

• FP (False Positives): cantidad de casos que han sido mal 
clasificados como positivos.

• FN (False Negatives): cantidad de casos positivos que el 
modelo no fue capaz de detectar.

• TN (True Negatives): cantidad de casos que se clasificaron de 
manera correcta como negativos.

Se evaluaron las 4 pruebas de YOLO con el uso de la matriz 

de confusión de cada uno respectivamente como se observa en 
la Figura 8. Estas matrices permitieron observar la evolución 
del desempeño de los modelos desde la primera prueba con 
YOLOv8n hasta la configuración final que fue con YOLOv8s. 
La Tabla 6 y la Figura 9 presentan el rendimiento comparativo 
de los modelos en las métricas F1-score, recall, precisión y mAP. 
La Prueba 4 YOLOv8s alcanzó los valores más altos, con una 
precisión del 95.08 % y un mAP@50 de 96.97 %, demostrando así 
su habilidad superior para identificar objetos con gran exactitud. 
Por otro lado, los resultados de las pruebas 2 y 3 mostraron 
rendimientos moderados, lo que evidencia el impacto del tamaño 
del conjunto de datos y la configuración de hiperparámetros. La 
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Figura 8. Matrices de evaluación de las Pruebas de YOLO. 
(Prueba 1) Primera imagen; (Prueba 2) Segunda imagen; 

(Prueba 3) Tercera imagen; (Prueba 4) Cuarta imagen.
Fuente: Los autores.
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Prueba 1 YOLOv8n demostró una estabilidad inferior, lo que 
confirma que YOLOv8s brinda un mayor balance entre precisión 

y velocidad. Los resultados, en general, corroboran que la 
prueba final YOLOv8s es la más apropiada para el seguimiento 
inteligente, ofreciendo el mejor equilibrado entre alta precisión y 
la eficiencia requerida para hardware de bajo costo.

La Figura 10 muestra la interfaz del sistema de videovigilancia 
inteligente en funcionamiento, se puede observar el flujo de 
video en tiempo real donde resaltan las etiquetas de “persona”, 
“arma” y “persona armada” siendo estos los objetos que están 
detectados por el modelo, también se encuentra el panel de 
las “detecciones activas”, la cual resume cada hallazgo con su 
porcentaje precisión y sus coordenadas exactas. Para evaluar el 
prototipo de monitoreo inteligente, se realizaron diez pruebas 
experimentales utilizando videos grabados en interiores y 
exteriores de locales comerciales, en diferentes condiciones 
de iluminación y con variación en los ángulos de cámara. En 

cada escenario se representaron situaciones con personas, 
armas y personas armadas, con el fin de verificar la capacidad 
de detección y reconocimiento en un entorno real. El modelo 
seleccionado, YOLOv8s en su configuración final (Prueba 4), 
procesó los videos en tiempo real y los resultados obtenidos 
fueron contrastados con las predicciones esperadas a partir de 
la fase de entrenamiento, lo que permitió medir con precisión su 
desempeño en escenarios de seguridad no controlados.

Para profundizar en el rendimiento del sistema, se elaboró un 
análisis cuantitativo de errores a partir de los diez videos de 
prueba. En la Tabla 7 se puede verificar cada caso en donde se 
registraron los valores de Falsos Positivos (FP), Falsos Negativos 
(FN), Verdaderos Positivos (TP) y Verdaderos Negativos (TN) 
para cada clase de Persona, Arma y Persona armada, tienen diez 
escenarios de prueba.

• Clase Persona: alcanzó valores altos de TP en todos los 

escenarios (26–30), con FN bajos (1–3), confirmando que el 
modelo mantiene su robustez para identificar individuos.

• Clase Arma: fue la más sensible a variaciones ambientales, con 
algunos FP (1–2) y FN (2–4), lo que evidencia confusiones con 
objetos similares en baja luz o ángulos difíciles.
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Tabla 6. Comparativa de rendimiento de los modelos 
entrenados.

Fuente: Los autores.

Tabla 7. Análisis cuantitativo de los videos por clase.
Fuente: Los autores.

Figura 9. Comparación de métricas de rendimiento entre 
modelos YOLOv8n y YOLOV8s.

Fuente: Los autores.

Modelo Precisión 
(%)

Recall 
(%)

F1-Score 
(%)

mAP@50 
(%)

mAP@50–
95 (%)

Prueba 1 
(YOLOv8n) 88.92 84.63 86.73 88.32 67.85

Prueba 2 
(YOLOv8s) 63.64 62.46 63.05 61.67 43.61

Prueba 3 
(YOLOv8s) 80.54 75.80 78.13 87.54 57.87

Prueba 4 
(YOLOv8s) 95.08 92.94 93.99 96.97 72.68

Video Clase FP FN TP TN

1
Persona
Arma

Persona armada

2
1
0

1
2
1

27
8
9

70
89
90

2
Persona
Arma

Persona armada

3
2
1

0
1
2

28
10
8

69
87
89

3
Persona
Arma

Persona armada

1
0
2

2
3
1

26
9
9

71
88
88

4
Persona
Arma

Persona armada

2
1
0

1
1
2

27
11
8

70
87
90

5
Persona
Arma

Persona armada

1
0
1

1
2
1

28
10
9

70
89
89

6
Persona
Arma

Persona armada

2
1
0

0
2
1

29
9
10

69
88
89

7
Persona
Arma

Persona armada

3
2
1

2
3
2

25
7
8

71
88
89

8
Persona
Arma

Persona armada

1
1
0

1
2
1

30
9
10

68
88
89

9
Persona
Arma

Persona armada

2
3
2

3
2
1

26
8
9

70
87
88

10
Persona
Arma

Persona armada

1
1
0

1
1
1

28
10
9

70
88
90
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Figura 11. Comparación de métricas por escenario de validación del prototipo.
Fuente: Los autores.

Matriz de confusión Predicción Persona Predicción Arma Predicción Persona armada

Real: Persona 840 18 32

Real: Arma 40 211 15

Real: Persona armada 25 22 210

Figura 10. Interfaz de prototipo del sistema de vigilancia inteligente.
Fuente: Los autores.

Tabla 9. Matriz de confusión detallada del modelo final
Fuente: Los autores.
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Clase Persona armada: se mantuvo en un rango de 8–10 TP 
por escenario, aunque con FN asociados a armas parcialmente 
ocultas y FP mínimos.

Los resultados obtenidos en cada escenario se muestran en una 
matriz donde se evalúan las métricas establecidas previamente, 
donde se realiza el cálculo de la diferencie entre lo previsto y lo 
obtenido como se observa en la Tabla 8 y en la Figura 11.

Análisis y discusión comparativa

Análisis de pruebas mediante las matrices de confusión

En la Prueba 1 (YOLOv8n) se evidenció un bajo desempeño en 

la detección de armas y personas armadas, con numerosos falsos 
negativos y confusiones hacia la clase background.  Esto reflejó 
las limitaciones del modelo ligero para escenarios complejos. En 
la Prueba 2 (YOLOv8s) se registraron mejoras en la detección 
de personas, aunque persistieron falsos positivos entre arma 
y persona armada. En la Prueba 3 (YOLOv8s) se alcanzó 
un balance más favorable, reduciendo los errores en la clase 
persona, aunque la identificación de personas armadas continuó 
siendo un reto. Finalmente, la Prueba 4 (YOLOv8s) mostró el 
mejor desempeño, con una reducción significativa de falsos 
positivos y falsos negativos, logrando alta precisión en todas las 
clases críticas.
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Figura 12. Desempeño del modelo en entorno controlado (Video 1 – Interior iluminado).
Fuente: Los autores.

Figura 13. Desempeño del modelo en condiciones adversas (Video 4 – Escenario nocturno mixto).
Fuente: Los autores.
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Análisis de la Matriz de confusión del mejor modelo

La Tabla 9 presenta la matriz de confusión correspondiente a 
las pruebas realizadas con el modelo seleccionado, donde se 
resumen las predicciones correctas e incorrectas para cada clase 
definida en el sistema: persona, arma y persona armada.

El análisis reveló que:

• La mayor parte de los errores se concentraron en la confusión 
entre las clases arma y persona armada, ya que en varias 
ocasiones el modelo clasificó incorrectamente armas como 
personas armadas o viceversa. Esta situación puede atribuirse a 
la similitud visual y a la dificultad de identificar con precisión 
objetos pequeños en escenas con variaciones de ángulo o con 
oclusiones parciales.

• También se registraron casos en los que personas armadas 
fueron clasificadas únicamente como persona, lo que indica que 
la detección conjunta del individuo y el arma continúa siendo un 
reto en escenarios de mayor complejidad.

• En menor medida, se observaron confusiones de armas con 
objetos no etiquetados (como herramientas o teléfonos móviles), 
lo que sugiere la necesidad de refinar el dataset con más ejemplos 
negativos y diversificar las condiciones de entrenamiento para 
reducir estos falsos positivos.

Con base en los resultados obtenidos en la Tabla 6, la Prueba 4 
(YOLOv8s) fue seleccionada como el mejor modelo debido a 
su rendimiento superior y más equilibrado en comparación con 
las configuraciones anteriores. Mientras que las pruebas iniciales 
evidenciaron limitaciones notables en la detección de armas y 
personas armadas, así como altos niveles de falsos positivos y 
negativos, la versión optimizada logró superar estas deficiencias 
alcanzando métricas de precisión (95.08 %), recall (92.94 %) y 
F1-score (93.99 %) que confirman su solidez en la clasificación 
de las tres clases críticas. En particular, el valor de mAP@50 
(96.97 %) resalta su capacidad para identificar objetos con alta 
exactitud en condiciones diversas, mientras que el desempeño en 
mAP@50–95 (72.68 %) demuestra una robustez aceptable frente 
a variaciones en la superposición entre predicciones y etiquetas 
reales.

Análisis comparativos del prototipo en diversos escenarios

• Video 1 (Robo interior iluminado): mantuvo cifras elevadas 
y similares a lo anticipado, con variaciones de hasta el 3 % en 
Recall y Precisión. La detección ininterrumpida de armas y 
personas fue posible gracias a la iluminación adecuada en un 
ambiente regulado, lo que asegura un desempeño confiable. 

• Video 2 (Tienda interior iluminado): el modelo se demostró 

Tabla 8. Comparación entre valores previstos y reales por 
escenario.

Fuente: Los autores.

Escenario (Video) Métrica Previsto 
(%)

Obtenido 
(%) Diferencia

Video 1 – Robo
interior iluminado

Precisión
Recall

F1-Score
mAP@50

mAP@50–95

95
93
94
97
76

92
90
91
94
72

-3.0
-3.0
-3.0
-3.0
-4.0

Video 2 – Tienda
Interior iluminado

Precisión
Recall

F1-Score
mAP@50

mAP@50–95

95
93
94
97
76

93
92
92
95
74

-2.0
-1.0
-2.0
-2.0
-2.0

Video 3 – Robo 
local

interior

Precisión
Recall

F1-Score
mAP@50

mAP@50–95

95
93
94
97
76

93
92
92
95
73

-2.0
-1.0
-2.0
-2.0
-3.0

Video 4 – Escenario
nocturno mixto

Precisión
Recall

F1-Score
mAP@50

mAP@50–95

95
93
94
97
76

90
88
89
92
70

-5.0
-5.0
-5.0
-5.0
-6.0

Video 5 – Robo 
interior

Medio iluminado

Precisión
Recall

F1-Score
mAP@50

mAP@50–95

95
93
94
97
76

91
90
90
93
71

-4.0
-3.0
-4.0
-4.0
-5.0

Video 6 – 
Actividades 
sospechozas

Precisión
Recall

F1-Score
mAP@50

mAP@50–95

95
93
94
97
76

91
90
90
93
71

-4.0
-3.0
-4.0
-4.0
-5.0

Video 7 – Exterior 
con

lluvia leve

Precisión
Recall

F1-Score
mAP@50

mAP@50–95

95
93
94
97
76

92
91
92
94
73

-3.0
-2.0
-2.0
-3.0
-3.0

Video 8 – Interior 
con

movimiento rápido 
de

cámara

Precisión
Recall

F1-Score
mAP@50

mAP@50–95

95
93
94
97
76

93
91
92
94
73

-2.0
-2.0
-2.0
-3.0
-3.0

Video 9 – Multitud 
en

espacio público 
diurno

Precisión
Recall

F1-Score
mAP@50

mAP@50–95

95
93
94
97
76

92
90
91
94
72

-3.0
-3.0
-3.0
-3.0
-4.0

Video 10 – Interior
nocturno con luz 

artificial

Precisión
Recall

F1-Score
mAP@50

mAP@50–95

95
93
94
97
76

91
89
90
93
71

-4.0
-4.0
-4.0
-4.0
-5.0
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eficaz, con cifras estables y una discrepancia de menos del 2 % 
respecto a lo que se esperaba. Se disminuyó el número de falsos 
negativos y la precisión se mantuvo en niveles altos debido a una 
iluminación homogénea, lo que permitió identificar mejor a las 
personas y a las armas.

• Video 3 (Robo local interior): este fue uno de los contextos 
más estables, con pérdidas mínimas y métricas que superan el 92 
%. Un rendimiento parejo en la detección de todas las clases fue 
facilitado por un entorno cerrado y con condiciones homogéneas.

• Video 4 (Escenario mixto): mostró reducciones de hasta un 
6 % en Recall y mAP@50-95, lo cual demuestra que el modelo 
es sensible a las condiciones difíciles de luz. La existencia 
de contrastes y sombras produjo ciertos falsos negativos, 
particularmente en el reconocimiento de armas.

• Video 5 (Robo Interior medio iluminado): exhibió un 
rendimiento aceptable, con descensos de entre el 3 % y el 5 %. 
El sistema mantuvo la estabilidad en la detección de individuos 
y una calidad aceptable en la identificación de armas, a pesar 
de que la iluminación no fue tan buena como en los primeros 
escenarios.

• Video 6 (Actividad sospechosa): mantuvo las métricas 
generales por encima del 90%, lo que confirma que el prototipo 
es capaz de funcionar en situaciones críticas. La identificación 
simultánea de personas y armas se llevó de manera confiable, 
aunque es importante señalar que sí hubo pérdidas mínimas en 
Recall, principalmente debido a la diversidad de situaciones en 
el escenario.

• Video 7 – (Exterior con lluvia leve): se analizó el desempeño 
en condiciones climáticas desfavorables. A pesar de que se notó 
un pequeño incremento en los falsos negativos de armas debido 
al desenfoque provocado por la lluvia, el modelo mantuvo 
detecciones estables.

• Video 8 – (Interior con movimiento rápido de cámara): se 
puso a prueba la resistencia del sistema frente a cambios súbitos 
de enfoque. Los resultados revelaron una buena estabilidad, 
manteniendo una alta exactitud en la identificación de personas 
y personas armadas.

• Video 9- (Multitud en espacio público diurno): se estudió 
la capacidad de detección en un entorno con una gran cantidad 
de personas y objetos. A pesar de que se dieron confusiones 
específicas entre armas y objetos semejantes, el sistema logró 
sostener un equilibrio razonable.

• Video 10 – (Interior nocturno con luz artificial): se constató 
la eficacia en condiciones de iluminación mixta, mostrando una 
ligera reducción del recall frente a los entornos diurnos con luz 
natural; no obstante, se detectaron correctamente las tres clases 
críticas.

El análisis comparativo entre el peor y el mejor escenario 
analizado mostró de manera directa cómo las condiciones 
del entorno y la luz influyen en el desempeño del modelo. En 

la Figura 12 (Video 1 -interior iluminado), se evidenció una 
detección confiable y estable de personas armadas, armas y 
personas, con métricas de precisión y recall que superaron el 90 
%. La identificación precisa de los objetos fue posible gracias 
a la ausencia de oclusiones, al fondo uniforme y a la buena 
iluminación, lo que demostró que el modelo YOLOv8s puede 
funcionar con eficacia en escenarios controlados. Por otro lado, 
La Figura 13 (Video 4 - interior/exterior nocturno) fue el más 
difícil de todos, con caídas registradas en las métricas de recall 
y mAP@50–95 que alcanzaron hasta un 6 %. Las variaciones de 
luz, las sombras y los reflejos produjeron falsos negativos, sobre 
todo en la detección de armas, lo que demuestra que el modelo es 
sensible a condiciones desfavorables de iluminación.

Discusión

El análisis de los resultados hizo posible el reconocimiento 
preciso de las fortalezas y limitaciones del prototipo sugerido, así 
como su contribución distintiva en el ámbito de la videovigilancia 
inteligente. El modelo YOLOv8s mostró un rendimiento sólido, 
conservando indicadores de precisión y recall superiores al 
90% bajo condiciones óptimas de iluminación, lo cual confirma 
su utilidad para usos de videovigilancia en tiempo real. Este 
comportamiento demuestra que el modelo tiene la habilidad 
de equilibrar la velocidad de inferencia con la precisión en la 
identificación de personas y armas, como se ha informado en 
investigaciones recientes sobre la misma arquitectura (Delwar 
et al., 2025; Nasir et al., 2025). Sin embargo, se notó que el 
rendimiento disminuyó hasta un 6% en condiciones de poca 
luminosidad, lo cual demuestra que la calidad del entorno visual 
continúa siendo un factor clave para percibir objetos pequeños o 
parcialmente visibles.

El prototipo desarrollado cumple con el objetivo de la 
investigación, logrando un sólido F1-score del 93.99%. La 
eficiencia computacional fue otro elemento significativo que se 
examinó, además de la precisión. Este estudio, a diferencia de la 
mayoría de los trabajos existentes que se enfocan en optimizar 
las métricas de precisión, también verificó el desempeño del 
prototipo en hardware asequible. Según lo indicado en la Fase 6, 
el sistema final funciona con un tiempo total de procesamiento 
de 30 ms, que incluye 22 ms para la inferencia por cuadro. Este 
descubrimiento es importante cuando se comparan nuestros 
resultados con los de la literatura. Aunque los trabajos de Nasir 
et al. (2025) y Delwar et al. (2025) ofrecen F1-scores teóricos 
más altos, del 94.7% y del 98% respectivamente, suelen 
enfocarse solo en la precisión algorítmica sin tratar el costo 
computacional o las exigencias de hardware. Aunque un modelo 
que necesita una GPU de gama alta puede parecer atractivo, no 
es viable implementarlo de manera masiva. En contraste, nuestra 
investigación muestra que es factible lograr una precisión 
elevada con un F1-score de 93.99%, y a la vez ser prácticamente 
viable, funcionando de manera eficaz en hardware de gama baja 
y para el consumo.

Esta democratización de la tecnología tiene efectos directos en 
situaciones latinoamericanas y en países en vías de desarrollo 
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con recursos escasos. La arquitectura propuesta posibilita que 
otras instituciones apliquen el sistema sin depender de soluciones 
costosas y de propiedad exclusiva, al facilitar su replicabilidad 
por medio de herramientas de código abierto. A diferencia de 
esto, los estudios anteriores, como Schcolnik-Elias et al. (2023) y 
Gawande et al. (2024), optimizan la precisión, pero no toman en 
cuenta la escalabilidad económica. Los hallazgos evidencian que 
este enfoque no pone en riesgo la eficacia del sistema. Cuando se 
pondera la disminución de costos, la diferencia en rendimiento 
con respecto al hardware de gama alta es mínima; este hallazgo 
es especialmente significativo en un contexto donde la brecha 
tecnológica en aplicaciones de inteligencia artificial para la 
seguridad pública sigue creciendo.

Los hallazgos, en esencia, confirman la eficacia del prototipo 
y su aptitud para incorporarse a sistemas reales de vigilancia 
inteligente que cuenten con hardware comercial accesible. El 
hecho de que la calidad del video y la luminosidad ambiental 
dependan mutuamente es una limitación operativa intrínseca 
a los sistemas de visión por computadora. Para solucionar 
este problema, se deben utilizar en etapas posteriores sensores 
infrarrojos o métodos avanzados de aumento de datos específicos 
para condiciones con poca luz. Estas mejoras no solamente 
aumentarían la robustez y adaptabilidad del sistema en situaciones 
adversas, sino que también fortalecerían su aportación como una 
herramienta tecnológica escalable, factible y asequible para la 
seguridad ciudadana actual. Esto es particularmente importante 
en escenarios con recursos escasos en donde la necesidad de 
sistemas inteligentes para prevenir y responder rápidamente a 
amenazas es cada vez más urgente.

4. Conclusiones

El estudio fue capaz de crear y validar un prototipo de monitoreo 
inteligente fundamentado en YOLOv8s, el cual muestra un 
balance ideal entre una precisión alta y la eficiencia computacional. 
Los resultados corroboran que el modelo es una herramienta 
sólida para la detección en tiempo real, lo cual valida tanto su 
factibilidad técnica como su viabilidad económica al funcionar 
de manera eficaz en hardware asequible. Por ende, este trabajo 
proporciona una solución práctica y con capacidad de escalarse 
económicamente, que cierra la brecha entre la exactitud teórica 
de los modelos de IA y su implementación posible en sistemas 
de seguridad reales. La metodología CRISP-DM permitió la 
adecuada organización de las fases de modelado, evaluación y 
preparación, garantizando de esta manera un proceso laboral que 
es eficiente y reproducible.

Sin embargo, el estudio también estableció limitaciones 

inherentes al diseño de la investigación y a la naturaleza del 
conjunto de datos. La evaluación del desempeño en contextos 
no estructurados o con cambios drásticos está restringida por la 
dependencia de videos breves y regulados. Asimismo, la dificultad 
para detectar objetos y armas no letales y la sensibilidad del 
modelo en condiciones de escasa iluminación muestran que su 
exactitud de detección aún se encuentra sujeta a factores ajenos. 
A pesar de que estos límites no invalidan los descubrimientos, 
resaltan la importancia de fortalecer la robustez del modelo 
utilizando un conjunto de datos más diverso y representativo.

A partir de estas observaciones, se proponen múltiples líneas 
de investigación futura para optimizar el sistema: aumentar 
la diversidad del conjunto de datos incorporando escenas 
más diversas, implementar técnicas de aumento de datos 
más avanzadas, introducir sensores térmicos o infrarrojos en 
situaciones con poca luminosidad y analizar arquitecturas 
híbridas de detección que integren diferentes clases de redes 
neuronales. Estos progresos tienen el potencial de reducir los 
falsos positivos que surgen al clasificar objetos y mejorar la 
habilidad del sistema para operar en condiciones adversas.
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