
QhaliKay. Revista de Ciencias de la Salud. Publicación arbitrada cuatrimestral. ISSN 2588-0608 / Enero-Abril 2021;5(1):38-44
Facultad de Ciencias de la Salud. Universidad Técnica de Manabí. Portoviejo, Ecuador 43
11.Wu L, Zeng T, Deligios M, Milanesi L, Langille M, Zinellu A, Rubino S, Carru C, Kelvin DJ. Age-
related variation of bacterial and fungal communities in different body habitats across the young, elderly,
and centenarians in Sardinia. mSphere [Internet]. 2020;5(1):e00558-19. Disponible en:
https://doi.org/10.1128/mSphere.00558-19
12.Luan Z, Sun G, Huang Y, Yang Y, Yang R, Li C, Wang T, Tan D, Qi S, Jun C, Wang C, Wang S, Zhao
Y, Jing Y. Metagenomics study reveals changes in gut microbiota in centenarians: A cohort study of
Hainan centenarians. Front Microbiol [Internet]. 2020;11(1474). Disponible en:
https://doi.org/10.3389/fmicb.2020.01474
13.Kim S, Jazwinski SM. The gut microbiota and healthy aging: A mini-review. Gerontology [Internet].
2018;64(6):513-20. Disponible en: https://doi.org/10.1159/000490615
14.Santoro A, Ostan R, Candela M, Biagi E, Brigidi P, Capri M, Franceschi C. Gut microbiota changes in
the extreme decades of human life: a focus on centenarians. Cell Mol Life Sci [Internet]. 2018;75:129-
48. Disponible en: https://doi.org/10.1007/s00018-017-2674-y
15.Rampelli S, Soverini M, D’Amico F, Barone M, Tavella T, Monti, Capri M, Astolfi A, Brigidi P, Biagi
E, Franceschi C, Turroni S, Candela M. Shotgun metagenomics of gut microbiota in humans with up to
extreme longevity and the increasing role of xenobiotic degradation. mSystems [Internet].
2020;5:e00124-20. Disponible en: https://doi.org/10.1128/mSystems.00124-20
16.Enaud R, Prevel R, Ciarlo E, Beaufils F, Wieërs G, Guery B, Delhaes L. The gut-lung axis in health and
respiratory diseases: a place for inter-organ and inter-kingdom crosstalks. Front Cell Infect Microbiol
[Internet]. 2020;10. Disponible en: https://dx.doi.org/10.3389%2Ffcimb.2020.00009
17.Conte L, Toraldo DM. Targeting the gut-lung microbiota axis by means of a high fibre diet and
probiotics may have anti-inflammatory effects in COVID 19 infection. Ther Adv Respir Dis [Internet].
2020;14:1-5. https://dx.doi.org/10.1177%2F1753466620937170
18.Scarpellini E, Fagoonee S, Rinninella E, Rasetti C, Aquila I, Larussa T, Ricci P, Luzza F, Abenavoli L.
Gut Microbiota and liver interaction through immune system cross-talk: a comprehensive review at the
time of the SARS-CoV-2 pandemic. J Clin Med [Internet]. 2020;9(8):2488. Disponible en:
https://doi.org/10.3390/jcm9082488
19.He Y, Wang J, Li F, Shi Y. Main clinical features of Covid 19 and potential prognostic and terapeutic
value of the microbiota in SARS CoV 2 infections. Front Microbiol [Internet]. 2020;11:1302.
Disponible en: https://doi.org/10.3389/fmicb.2020.01302
20.Aktas B, Aslim B. Gut-lung axis and dysbiosis in COVID 19. Turk J Biol [Internet]. 2020;44(3):265-
72. Disponible en: https://dx.doi.org/10.3906%2Fbiy-2005-102
21.Fanos V, Pintus MC, Pintus R, Marcialis MA. Lung microbiota in the acute respiratory disease: from
coronavirus to metabolomics. J Pediatr Neonat Individual Med [Internet]. 2020;9(1):e090139.
Disponible en: https://doi.org/10.7363/090139
22.Shruti A, Krishna S. Immunological co-ordination between gut and lungs in SARS-CoV-2 infection.
Virus Res [Internet]. 2020;286:198103. Disponible en: https://doi.org/10.1016/j.virusres.2020.198103
23.He L-H, Ren L-F, Li J-F, Wu Y-N, Li X, Zhang L. Intestinal flora as a potential strategy to fight SARS-
CoV-2. Infection. Front Microbiol [Internet]. 2020;11:1388. Disponible en:
https://dx.doi.org/10.3389%2Ffmicb.2020.01388
24.Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, Wu S, Liu W, Cui Q, Geng B, Zhang W, Weldon R,
Auguste K, Yang L, Liu X, Chen L, Yang X, Zhu B, Cai J. Gut microbiota dysbiosis contributes to the
development of hypertension. Microbiome [Internet]. 2017;5(1):14. Disponible en:
https://doi.org/10.1186/s40168-016-0222-x
25.Tang W, Backhed F, Landmesser U, Hazen S. Intestinal Microbiota in Cardiovascular Health and
Disease: JACC state-of-the-art review. J Am Coll Cardiol [Internet]. 2019;73(16):2089-105. Disponible
en: https://doi.org/10.1016/j.jacc.2019.03.024
26.Serena C, Ceperuelo-Mallafré V, Keiran N, Queipo-Ortuño MI, Bernal R, Gómez-Huelgas R, Urpi-
Sarda M, Sabater M, Pérez-Brocal V, Andrés-Lacueva C, Moya A, Tinahones FJ, Fernández-Real JM,
Vendrell J, Fernández-Veledo S. Elevated circulating levels of succinate in human obesity are linked to