Fernández Gilberto, Cruz Marely, Ordóñez Ermenson, Moreira José. Predicción de evolución post covid19 en
pacientes, usando herramientas de la big data.
135
Brownlee, J. (2016). Machine Learning Mastery with Python: Understand Your Data, Create
Accurate Models, and Work Projects End-to-End. Machine Learning Mastery.
https://n9.cl/lnk4v
Herrera, C. E., Lage, D., Betancourt, J., Barreto, E., Sánchez, L., y Crombet, T. (2021).
Nomograma de predicción para la estratificación del riesgo en pacientes con COVID-
19. European Journal of Health Research:(EJHR), 7(2), 1-19.
https://doi.org/10.32457/ejhr.v7i2.1592
Crespo, M. (2019). Análisis de la Encuesta de Salud Nacional y Examen de Nutrición de
Estados Unidos (NHANES) usando machine learning. [Tesis de maestría, Universidad
Oberta de Catalunya].UOC. https://hdl.handle.net/10609/99127
García, S., Ramírez-Gallego, S., Luengo, J., & Herrera, F. (2016). Big Data: Preprocesamiento
y calidad de datos. Big Data monografía, (237), 17-23. https://n9.cl/spesd
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer. https://n9.cl/yumt2
Leung, C. K., Chen, Y., Hoi, C. S.H., Shang, S., Wen, Y. & Cuzzocrea, A. (2020, del 07 al 11
de septiembre). Big Data Visualization and Visual Analytics of COVID-19 Data
[conference]. 24th International Conference Information Visualisation (IV).
Melbourne, Australia. https://doi.org/10.1109/IV51561.2020.00073
Medel-Ramírez, C. & Medel-López, H. (2020). Data Mining for the Study of the Epidemic
(SARS- CoV-2) COVID-19: Algorithm for the Identification of Patients (SARS-CoV-2)
COVID 19 in Mexico. SSRN. https://dx.doi.org/10.2139/ssrn.3619549
Naeem, M., Jamal, T., Diaz-Martínez, J., Butt, S. A., Montesano, N., Tariq, M. I., De-La-Hoz-
Franco, E. & De-La-Hoz-Valdiris, E. (2022). Trends and future perspective challenges
in big data. In J-S. Pan., V.E. Balas. y C. M. Chen. (Eds.), Advances in Intelligent Data
Analysis and Applications. Smart Innovation, Systems and Technologies (pp. 309-325).
Springer, Singapore. https://doi.org/10.1007/978-981-16-5036-9_30
Ong, A. K. S., Prasetyo, Y. T., Yuduang, N., Nadlifatin, R., Persada, S. F., Robas, K. P. E.,
Chuenyindee Thanatorn & Buaphiban, T. (2022). Utilization of random forest classifier
and artificial neural network for predicting factors influencing the perceived usability
of COVID-19 contact tracing “Morchana” in Thailand. International Journal of