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Resumen
La normalización de características, es un paso clave en clasificación supervisada, especialmente 
cuando los datos presentan escalas heterogéneas. Este estudio tiene objetivo evaluar el impacto de 
dos estrategias de normalización (MinMax y Z-Score) en el rendimiento de tres modelos: Regresión 
Logística, SVC/SVM y Árbol de Decisión, aplicados a cuatro datasets: Adult Income, Heart Disease, 
Student Performance Math y Student Performance Portuguese, obtenidos del repositorio Machine 
Learning Repository. Como metodología los modelos se entrenaron utilizando validación cruzada 
estratificada (k=5) y se compararon en términos de accuracy, precisión, recall, F1-score y ROC-AUC. 
Los resultados mostraron que la normalización con Z-Score tuvo un efecto significativo en el dataset 
de Adult Income, mejorando el rendimiento de la Regresión Logística (F1-score: 0.426 a 0.666; ROC-
AUC: 0.641 a 0.904). En contraste, el dataset de Heart Disease mostró un buen rendimiento, incluso 
sin normalización, el SVC/SVM con Z-Score mejoró sus métricas con la normalización (F1-score: 
0.741 a 0.881; ROC-AUC: 0.785 a 0.922). Sin embargo, estas diferencias no alcanzaron significancia 
estadística según el test de Wilcoxon (p≈0.0625), aunque si constituyen evidencia moderada. En los 
datasets de Student Performance los efectos de la normalización fueron mínimos y estadísticamente no 
significativos, lo cual puede explicarse porque las variables ya se encontraban en escalas comparables. 
Finalmente se confirman que la normalización no afecta por igual a todos los algoritmos: su impacto 
es más evidente en contextos socioeconómicos y clínicos, donde las variables suelen manejar escalas 
muy distintas. Esta evidencia aporta elementos prácticos para orientar el preprocesamiento de datos en 
áreas como salud, educación e industria.

Palabras clave: aprendizaje supervisado, normalización de datos, validación cruzada, 
clasificación binaria, desequilibrio de clases

Abstract
Feature normalization is a key step in supervised classification, especially when data are presented 
on heterogeneous scales. This study aims to evaluate the impact of two normalization strategies 
(MinMax and Z-Score) on the performance of three models: Logistic Regression, SVC/SVM, and 
Decision Tree, applied to four datasets: Adult Income, Heart Disease, Student Performance Math, and 
Student Performance Portuguese, obtained from the Machine Learning Repository. As a methodology, 
the models were trained using stratified cross-validation (k=5) and compared in terms of accuracy, 
precision, recall, F1-score, and ROC-AUC. The results showed that normalization with Z-Score had 
a significant effect on the Adult Income dataset, improving the performance of Logistic Regression 
(F1-score: 0.426 to 0.666; ROC-AUC: 0.641 to 0.904). In contrast, the Heart Disease dataset 
performed well even without normalization, but SVC/SVM with Z-Score improved its metrics with 
normalization (F1-score: 0.741 to 0.881; ROC-AUC: 0.785 to 0.922). However, these differences did 
not reach statistical significance according to the Wilcoxon test (p≈0.0625), although they do constitute 
moderate evidence. In the Student Performance datasets, the effects of normalization were minimal 
and statistically insignificant, which can be explained by the fact that the variables were already on 
comparable scales. Finally, it is confirmed that normalization does not affect all algorithms equally: 
its impact is more evident in socioeconomic and clinical contexts, where variables tend to use very 
different scales. This evidence provides practical elements to guide data preprocessing in areas such as 
health, education, and industry.

Keywords: supervised learning, data normalization, cross-validation, binary classification, class 
imbalance
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1. Introducción

En la era actual, los modelos de aprendizaje supervisado se han consolidado como pilares para la toma 
de decisiones y la predicción en diversos sectores. La eficacia de estos modelos no solo depende de la 
sofisticación algorítmica, sino fundamentalmente de la calidad y preparación de los datos de entrada (Yan, 
2025). En este proceso, la normalización de características numéricas resulta critica, pues ajusta las escalas de 
variables para evitar que aquellas con valores más grandes dominen el aprendizaje del modelo.  fomentando 
la estabilidad, velocidad de convergencia y precisión predictiva de los algoritmos sensitivos a escala, siendo 
esta última de mayor relevancia  (Mahmud et al., 2024).

Diversos estudios han señalado la importancia la normalización dentro del preprocesamiento de datos. 
Por ejemplo, autores como de Amorim et al., (2023), demostraron que el uso de una técnica de escalado 
inadecuada puede afectar más negativamente el rendimiento del modelo que la ausencia total de la 
normalización. Este hallazgo se respalda con el trabajo de Ahsan et al., (2021), quienes evaluaron el impacto 
de varias técnicas de escalado, como Min-Max Scaling y Z-score Standardization, sobre los algoritmos de 
clasificación (Regresión Logística, Máquina de Vectores de Soporte (SVC/SVM) y Árboles de Decisión) en 
múltiples datasets, pero sin enfocar su análisis en condiciones controladas de desequilibrio de clases. Mas 
recientemente, Elik (2024) confirmó la eficiencia de estas técnicas para la clasificación entre variedades de 
arroz, aunque limitado a un caso de estudio específico.

Aunque muchos trabajos dan evidencia del beneficio de la normalización, aún persisten deficiencias que 
este estudio busca abordar. En primer lugar, la mayoría de estos trabajos se enfocan en escenarios muy 
generales o en comparaciones a gran escala; sin embargo, no se detienen a examinar de manera detallada 
el comportamiento específico de Min-Max Scaling y Z-score en un conjunto reducido de modelos. En 
segundo lugar, pocos estudios han evaluado de manera comparativa el rendimiento del modelo con datos de 
distribución normal frente a un conjunto de control sin normalización. Además, la mayoría no mantiene el 
desbalance natural de clases, pues recurre a técnicas de rebalanceo artificial como SMOTE o undersampling. 
Esta limitación impide comprender el efecto puro de la normalización. lo que resalta la necesidad de 
investigaciones metodológicamente sólidas, como la propuesta en este estudio, para llenar estas brechas 
específicas en la literatura.

Para abordar estas limitaciones, este trabajo presenta un análisis empírico sobre el efecto de las técnicas 
de normalización Min-Max Scaling y Z-Score Standardization en el rendimiento de tres algoritmos 
representativos: Regresión Logística, Máquinas de Vectores de Soporte (SVC/SVM) y Árboles de Decisión. 
El estudio se centra en cuatro conjuntos de datos públicos ampliamente utilizados: Adult Income, Heart 
Disease, Student Performance (Matemáticas) y Student Performance (portugués). Esta selección permite 
obtener un perfil detallado del comportamiento de las técnicas de normalización bajo condiciones de 
datos diversas, con distintas características de distribución y niveles de desequilibrio de clases. De esta 
manera, se busca aislar y evaluar el efecto real de la normalización, evitando la influencia de otros factores 
metodológicos.

Para este propósito fue planeada una estrategia experimental confiable y reproducible con el fin de permitir 
la comparabilidad del efecto de la normalización con variabilidad representativa de escenarios reales. Esta 
estrategia es coherente con criterios del marco CRISP-ML(Q), para garantizar trazabilidad y rigor del 
proceso analítico. 

El objetivo principal de este trabajo es evaluar y comparar el efecto de las técnicas de normalización 
Min-Max Scaling y Z-score Standardization sobre modelos supervisados de aprendizaje, a partir de una 
experimentación replicable con datos reales. Los resultados buscan aportar evidencia empírica sobre cómo 
estas transformaciones inciden en el desempeño de los algoritmos y, de manera complementaria ofrecer 
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recomendaciones prácticas para expertos que enfrentan decisiones críticas de preprocesamiento en entornos 
reales de clasificación. 

Para alcanzar el objetivo de esta investigación se plantearon las siguientes preguntas:

¿Cómo influye la aplicación de las técnicas de normalización Min-Max Scaling y Z-score Standardization 
en el rendimiento de los modelos de Regresión Logística, SVM y Árboles de Decisión, considerando las 
características intrínsecas de diversos conjuntos de datos?

¿Cuál de los modelos de aprendizaje supervisado analizados resulta más o menos afectado por el proceso de 
elección del tipo de normalización frente a la presencia de desbalance de clases natural?

2. Materiales y Métodos

Esta investigación utilizó una metodología estructurada según el marco CRISP-ML(Q) (Studer et al., 2021), 
con una variación del proceso CRISP-DM, aplicable a proyectos de aprendizaje automático que incorpora 
mecanismos de aseguramiento de la calidad en todas las fases. El objetivo principal fue evaluar el efecto 
de dos técnicas de normalización: Min-Max Scaling y Z-score Standardization sobre modelos supervisados 
de aprendizajes aplicados a cuatro conjuntos de datos de distintos dominios. La aplicación de estas técnicas 
permitió compara su impacto de manera sistemática y reproducible.

2.1. Comprensión del problema  

La normalización de variables es una técnica clave en el preprocesamiento de datos. Esta transformación 
ajusta las escalas de las variables para que sean comparables entre sí, lo cual puede tener un impacto 
significativo en el rendimiento de ciertos algoritmos, especialmente aquellos sensibles a la magnitud de 
los valores de entrada (Aksu et al., 2019; Singh & Singh, 2020). En este estudio se cuantificó el efecto de 
dos métodos de normalización ampliamente utilizados: Min-Max Scaling y Z-score Standardization, sobre 
el desempeño de tres algoritmos clásicos de clasificación supervisada: Regresión Logística, Máquina de 
Vectores de Soporte (SVC/SVM) y árboles de decisión. La elección de estas técnicas se fundamenta en su 
uso frecuente en la literatura científica para estudios comparativos, lo que permite situar los resultados de 
este trabajo dentro del marco de investigaciones previas (de Amorim et al., 2023).

2.2. Comprensión de los datos

Se trabajó con cuatro conjuntos de datos públicos multivariados, extraídos del UCI Machine Learning 
Repository (Dua, 2019). Estos son: Adult Income Dataset de Kohavi & Becker, (1996), Student Performance 
Dataset de Cortez & Silva, (2008), Heart Disease Dataset de Detrano et al. (1989). Cada conjunto incluye 
variables numéricas y categóricas, con estructuras heterogéneas propias de su dominio. En el caso del 
Student Performance Dataset, se trabajó con dos subconjuntos independientes: uno corresponde al curso de 
matemáticas y otro al curso de portugués. Ambos comparten estructura y origen, pero fueron procesados por 
separado para preservar la homogeneidad del análisis. En la tabla 1 se muestran las variables clave que se 
usaron en cada conjunto de datos.

Tabla 1

Variables claves utilizadas por conjunto de datos.

Dataset Variable Tipo de 
Dato Unidad / Valores Descripción

Adult Income Age Numérica Años Edad del individuo

Adult Income Education Categórica Nivel educativo (e.g., 
HS-grad, Bachelors) Nivel educativo alcanzado

Adult Income Occupation Categórica Tipo de ocupación Actividad laboral principal
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Cont... Tabla 1

Variables claves utilizadas por conjunto de datos.

Dataset Variable Tipo de 
Dato Unidad / Valores Descripción

Adult Income capital.gain Numérica USD Ganancia de capital

Adult Income hours.per.week Numérica Horas Horas trabajadas por semana

Adult Income Income Binaria <=50K, >50K Variable objetivo: nivel de 
ingreso

Heart Disease Age Numérica Años Edad del paciente

Heart Disease ChestPainType Categórica ATA, NAP, ASY, TA Tipo de dolor torácico

Heart Disease Cholesterol Numérica mg/Dl Nivel de colesterol en sangre

Heart Disease MaxHR Numérica Latidos por minute Frecuencia cardíaca máxima 
alcanzada

Heart Disease HeartDisease Binaria 0: No, 1: Sí Presencia de enfermedad 
cardíaca (variable objetivo)

Student 
Performance Sex Categórica M, F Género del estudiante

Student 
Performance Studytime Ordinal 1 a 4 Tiempo de studio

Student 
Performance Failures Numérica 0–3 Número de asignaturas no 

aprobadas anteriormente

Student 
Performance G3 Numérica 0–20

Nota final del estudiante. 
Base para derivar la variable 
objetivo.

Student 
Performance Pass Binaria 1:Aprobado,              

0: Reprobado
Variable objetivo: 1 si G3 ≥ 
10, 0 en caso contrario

Student 
Performance Internet Categórica yes, no Acceso a internet en casa

Nota: la estructura de variables del Student Performance Dataset aplica tanto al subconjunto de matemáticas 
como al de portugués.

2.3. Preparación de los datos

El proceso de preparación de los datos fue estandarizado para todos los datasets. Y se desarrollo de la 
siguiente manera:

Tratamiento de valores faltantes: En el conjunto de datos Adult Income, los registros con datos faltantes en 
columnas clave (por ejemplo, ‘tipo de trabajo’, ‘ocupación’) que representaban apenas el 7,37% del total, 
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fueron eliminadas para evitar imputaciones arbitrarias. En columnas menos relevantes, como, por ejemplo, 
‘país de origen’ se imputó el valor más frecuente (moda). En los conjuntos de datos Student Performance 
Dataset y Heart Disease Dataset, no se detectaron datos faltantes, por lo tanto, no se aplicó ningún tratamiento.

Codificación de variables categóricas: Se aplicó codificación One-Hot a todas las variables categóricas, 
excluyendo la primera categoría para evitar multicolinealidad. Tras este proceso de preprocesamiento, se 
definió el tamaño muestral final de cada dataset, así como el número de variables resultantes. La Tabla 2 
(Sección de Resultados) resume estos valores, junto con la distribución de clases.

Conversión de valores booleanos: Las variables de tipo booleano con valores (verdadero/falso o sí/no) fueron 
convertidas a 1/0 para garantizar su compatibilidad con los modelos de aprendizaje supervisado.

Definición de la variable objetivo: En el conjunto Student Performance Dataset, se creó una variable 
categórica llamada pass, la cual considera como aprobados a los estudiantes que obtuvieron una nota final 
G3 ≥ 10, según el sistema escolar portugués. En el conjunto de datos Heart Disease Dataset, la variable Heart 
Disease ya venía establecida como categórica, indicando presencia (1) o ausencia (0) de la enfermedad.

2.4. Transformación de datos 

La transformación de datos fue un paso clave para evaluar el efecto de distintas técnicas de normalización 
sobre los modelos de clasificación seleccionados. Solo se aplicó a las variables numéricas predictoras, 
manteniendo sin modificar la variable objetivo y las variables categóricas ya codificadas.

Se implementaron dos métodos clásicos:

Min-Max Scaling: Cada característica se reescala al rango [0,1] aplicando la fórmula: 

 (1)

Donde: X’es el valor original y (Xmin;Xmax) son los valores mínimo y máximo de la columna. Esta técnica 
es muy útil cuando los algoritmos dependen de la escala de los datos, como SVM y Regresión Logística.

Z-score Standardization: Transformó los datos a una a una distribución con medida (0-1) donde la media 
es 0 y la desviación estándar 1, utilizando la fórmula:

 (2)

Donde: Z es el valor original, u es la media de la variable y σ es la desviación estándar. Esta técnica es la más 
adecuada cuando se desea neutralizar la influencia de valores extremos (outliers) y se asume una distribución 
aproximadamente normal de los datos.

Para evaluar cada técnica por separado, se diseñaron escenarios experimentales paralelos. Incluyendo un 
grupo de control sin normalizar. La normalización se realizó en cada fold de la validación cruzada estratificada, 
asegurando que los parámetros de escalado se calcularan únicamente sobre el conjunto de entrenamiento, 
evitando así la fuga de datos y manteniendo la proporción de clases en cada división. Además, se decidió 
conservar la distribución original de clases en todos los conjuntos de datos, incluso al identificar cierto 
desbalance en uno de los dataset, como en el Student Performance Dataset. Esto permitió evaluar el efecto 
real de la normalización sin introducir sesgos mediante técnicas de rebalanceo artificial (como SMOTE 
o undersampling). Para mitigar los posibles efectos adversos del desbalance, se incorporaron métricas de 
evaluación robustas, tales como el F1-score y el ROC-AUC.

2.5. Modelado

En esta fase se entrenaron tres algoritmos de clasificación ampliamente utilizados y respaldados en la 
literatura, con el objetivo de obtener resultados variados que nos permitan realizar un análisis integral del 
impacto de la normalización. Se incluyó:



Vol. 10, Núm. 2 (59-79): Julio-Diciembre 2025

64 RIEMAT: Revista de Investigaciones de Energía, 
Medio Ambiente y Tecnología

RIEMAT
Revista de Investigaciones en Energía,
Medio Ambiente y Tecnología:

Regresión Logística: Un modelo lineal clásico, interpretable y base en muchas aplicaciones. Para este 
modelo, se aplicó regularización L2 (Ridge) por defecto, buscando mejorar la generalización y mitigar el 
sobreajuste.

Máquina de Vectores de Soporte (SVC/SVM): Un algoritmo potente y eficaz en espacios de alta dimensión, 
pero sensible a la escala de los datos.

Árbol de Decisión: Este es un modelo jerárquico no lineal, robusto a datos mixtos, pero propenso al 
sobreajuste. 

La selección de estos modelos (lineal, de margen y basado en reglas) facilita la comparación del efecto 
de la normalización en diferentes tipos de algoritmos, siguiendo la metodología de estudios comparativos 
similares (de Amorim et al., 2023; Singh & Singh, 2020). 

Para asegurar la robustez y comparabilidad de los resultados, todos los modelos fueron evaluados mediante 
validación cruzada estratificada k-fold (k=5), manteniendo la proporción de clases en cada partición.

2.6. Evaluación 

Para evaluar el rendimiento de los modelos de clasificación, se emplearon métricas estándar para tareas 
binarias. En todos los conjuntos de datos se definió como clase positiva el valor 1, correspondiente a ingresos 
mayores a 50K, presencia de enfermedad cardíaca y aprobación escolar, según el caso. 

La primera métrica utilizada fue Accuracy (Precisión Global), que indicó la proporción de predicciones 
totales que fueron correctas. Se calculo con la ecuación: 

 (3)

Donde: TP (True Positivo) son las instancias positivas correctamente clasificadas, TN (True Negatives) 
son las instancias negativas correctamente clasificadas, FP (False Positives) son las instancias negativas 
clasificadas erróneamente como positivas, FN (False Negatives) son las instancias positivas clasificadas 
erróneamente como negativas. Nota: a partir de estas mismas definiciones se derivan otras métricas que 
también serán utilizadas y posteriormente detalladas, tales como el Recall (Ecuación 4), la Precision 
(Ecuación 5) y finalmente, ambas métricas pueden combinarse en el F1-score (Ecuación 6).

No todos los errores tienen el mismo impacto sobre el rendimiento del modelo, por lo que se incluyeron 
métricas más sensibles a distintos tipos de fallos. Una de ellas fue el Recall (también conocido como 
sensibilidad), que mide la proporción de casos positivos reales correctamente identificados por el modelo. 
Esta métrica es importante en situaciones donde no detectar un caso positivo puede tener consecuencias 
graves, como un paciente con enfermedad. Se calculó con la fórmula: 

 (4)

Junto con ella, se empleó la precisión, que indica la proporción de predicciones positivas que fueron correctas. 
Esta métrica es relevante cuando los falsos positivos implican un costo alto y se calcula con la ecuación:

 (5)
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Como síntesis de las dos anteriores, se utilizó el F1-score, una medida armónica que balancea la sensibilidad 
y la precisión. Esta métrica es particularmente útil cuando existe un desbalance entre clases, ya que penaliza 
al modelo por equivocarse en cualquiera de los dos sentidos, calculada con la ecuación.

 (6)

Finalmente, se consideró la métrica ROC-AUC (Área Bajo la Curva ROC), que evalúo la capacidad del 
modelo para distinguir entre clases sin depender de un umbral específico de clasificación. Esta se construye 
a partir de la curva ROC, que relaciona la tasa de verdaderos positivos con la de falsos positivos a lo largo 
de distintos umbrales. Un área mayor indica un mejor desempeño en términos de discriminación entre clases

Estas métricas fueron seleccionadas por ser las más relevantes en tareas de clasificación binaria, especialmente 
en contextos con posible desbalance de clases. Su uso está alineado con (Mohammed et al., 2022), quienes 
destacan la importancia de evaluar con métricas robustas en contextos de calidad de datos.

2.7. Entorno y herramientas

Los experimentos fueron desarrollados en el entorno de Google Colab empleando el lenguaje de 
programación Python (versión 3.10), aprovechando los recursos de cómputo compartido (CPU y GPU) 
asignados dinámicamente por la plataforma. Para el procesamiento y análisis de datos se utilizaron las 
bibliotecas pandas (McKinney, 2010) y numpy (Harris et al., 2020) mientras que scikit-learn (Pedregosa et 
al., 2011) fue clave en las tareas de preprocesamiento, normalización (con MinMaxScaler y StandardScaler), 
validación cruzada, implementación de algoritmos de clasificación (LogisticRegression, Máquina de 
Vectores de Soporte SVC/SVM y DecisionTreeClassifier) y evaluación de modelos mediante métricas como 
accuracy_score, precision_score, recall_score, f1_score y roc_auc_score.

Las visualizaciones y gráficos comparativos se generaron con matplotlib (Hunter, 2007) y seaborn (Waskom, 
2011). Adicionalmente, se integraron algunas bibliotecas como warnings, random y os, estas fueron usadas 
para controlar la aparición de advertencias, configuración de semillas aleatorias y gestionar el sistema de 
archivos. Para facilitar la integración con Google Drive y la carga de archivos se empleó la funcionalidad 
de Google.colab, y opcionalmente se utilizó la biblioteca tabulate para presentar las tablas de manera más 
ordenada y legible.

El código fue estructurado de forma modular para garantizar la reproducibilidad de los resultados. Para ello, 
se fijaron semillas mediante random.seed(42) y numpy.random.seed(42), asegurando así la consistencia en 
los experimentos realizados.

2.8. Aseguramiento de calidad (CRISP-ML (Q))

En cada etapa del proceso se aplicaron principios de aseguramiento tomados de la metodología CRISP-
ML(Q). Desde el inicio del proyecto, se formularon preguntas de investigación coherentes con el enfoque 
supervisado y con los objetivos experimentales planteados. Durante la fase de exploración de los datos se 
identificaron posibles sesgos, estructuras no uniformes y presencia de clases desequilibradas. Se trabajó con 
cuatro conjuntos de datos, tratando por separado los subconjuntos de matemáticas y portugués del Student 
Performance Dataset, con el fin de preservar la homogeneidad de cada dominio y evitar combinaciones que 
pudiesen dificultar la interpretación de los resultados.

La preparación y transformación de los datos se realizó de forma estandarizada, documentada y trazable. 
Las técnicas de normalización se aplicaron exclusivamente sobre las variables numéricas predictoras, y 
se ejecutaron en cada partición (fold) de la validación cruzada estratificada, con el fin de evitar la fuga de 
información. En la fase de modelado se empleó validación cruzada estratificada con control de aleatoriedad, lo 
que permitió garantizar tanto la comparabilidad como la reproducibilidad de los experimentos. La evaluación 
se basó en métricas robustas como Accuracy, Precision, Recall y F1-score, apropiadas para problemas de 
clasificación binaria. Todos los experimentos fueron desarrollados en Google Colab, con un código modular 
y documentación clara sobre cada decisión tomada. La Figura 1 resume el trabajo metodológico empleado 
en esta investigación.



Vol. 10, Núm. 2 (59-79): Julio-Diciembre 2025

66 RIEMAT: Revista de Investigaciones de Energía, 
Medio Ambiente y Tecnología

RIEMAT
Revista de Investigaciones en Energía,
Medio Ambiente y Tecnología:

Figura 1

Diagrama metodológico del estudio.

Nota: Esquema de las fases de preprocesamiento, normalización, entrenamiento, validación cruzada y 
evaluación de modelos, aplicadas sobre los cuatro conjuntos de datos analizados.

3. Resultados y Discusión

Los hallazgos cuantitativos se obtuvieron a partir de la evaluación comparativa de los algoritmos de 
clasificación (Regresión Logística, Support Vector Classifier y Árbol de Decisión) bajo los esquemas de 
normalización (ninguna, MinMax y Z-Score). Los valores presentados corresponden a los promedios que se 
obtuvieron mediante la validación cruzada estratificada k-fold (k=5) mismos que se presentan por separados 
según el conjunto de datos. En la fase experimental se calcularon cinco métricas de rendimiento (Accuracy, 
Precision, Recall, F1-score y ROC-AUC), pero para el análisis detallado y la discusión se priorizaron el F1-
score y el ROC-AUC, ya que estas permitieron capturar de forma más precisa el rendimiento de los modelos 
en tareas donde las escalas están desbalanceadas.

La Tabla 2, presenta la estructura final de los conjuntos de datos tras la aplicación técnicas de preprocesamiento, 
incluyendo la normalización y codificación de variables. Se detalla el número de filas eliminadas por la 
presencia de valores nulos, la cantidad de nuevas columnas generadas mediante One-Hot Encoding y el 
balance de clases para la variable objetivo. Estos aspectos proporcionan un marco de referencia para la 
interpretación de los resultados posteriores.
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Tabla 2

Tamaño muestral por dataset tras el preprocesamiento.
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Adult 
Income 32561 15 30162 97 2399 0 

(75.11%)
1 

(24.89%)

age, fnlwgt, 
education.num, 
capital.gain, capi…

90 columnas 
generadas

Heart 
Disease 918 12 918 16 0 1 

(55.34%)
0 

(44.66%)

Age, RestingBP, 
Cholesterol, 
FastingBS, 
MaxHR,...

9 columnas 
generadas

Student 
Performance 
(Math)

395 33 395 40 0 1 
(67.09%)

0 
(32.91%)

age, Medu, 
Fedu, traveltime, 
studytime, failur...

26 columnas 
generadas

Student 
Performance 
(Portuguese)

649 33 649 40 0 1 
(84.59%)

0 
(15.41%)

age, Medu, 
Fedu, traveltime, 
studytime, failur...

26 columnas 
generadas

Nota: Resumen de dimensiones y variables finales obtenidas tras el preprocesamiento en cada dataset. One-
Hot Encoding.

Dataset Adult Income

En el conjunto de datos Adult Income, la evaluación de los modelos de clasificación reveló que la Regresión 
Logística y el SVC/SVM superaron de manera significativa al Árbol de Decisión. Esta superioridad se 
cuantificó utilizando el F1-score y el ROC-AUC. La Figura 2 presenta las curvas ROC correspondientes 
a los modelos más destacados, con y sin normalización. Los valores numéricos detallados de todas las 
métricas evaluadas para este conjunto de datos se muestran en la Tabla 3.

Tabla 3

Métricas de rendimiento F1-score y ROC-AUC por modelo y tipo de normalización para el Dataset Adult 
Income.

Modelo Normalización Accuracy Precision Recall F1-score ROC-AUC

Decision Tree MinMax 0.811087 0.618646 0.628529 0.623520 0.750118

Decision Tree None 0.811054 0.618596 0.628396 0.623427 0.750051

Decision Tree Z-Score 0.810921 0.618349 0.628130 0.623170 0.749874
Logistic 
Regression MinMax 0.846131 0.733692 0.599359 0.659649 0.902355
Logistic 
Regression None 0.795770 0.706317 0.315414 0.426485 0.641398
Logistic 
Regression Z-Score 0.847988 0.735503 0.607884 0.665520 0.904376

SVC/SVM MinMax 0.833930 0.716924 0.550211 0.622464 0.889649

SVC/SVM None 0.787680 0.979994 0.150106 0.260317 0.629974

SVC/SVM Z-Score 0.843644 0.745935 0.564200 0.642309 0.892034

Nota: Valores promedio obtenidos mediante validación cruzada estratificada (k=5), considerando el 
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preprocesamiento aplicado (MinMax, Z-Score y ninguno).

En el dataset Adult Income, el modelo de Regresión Logística sin normalización alcanzó un F1-score de 0.426 
y un ROC-AUC de 0.641. Al aplicar la normalización por estandarización (Z-Score), el rendimiento mejoró 
de forma significativa, alcanzando un F1-score de 0.666 (+56.2%) y un ROC-AUC de 0.904 (+41.0%). Este 
incremento confirmó la alta dependencia de este modelo respecto a la escala de las variables. Comparado con 
el modelo SVC/SVM bajo las mismas condiciones, la Regresión Logística con Z-Score logró un F1-score 
ligeramente mayor (0.666 frente a 0.642).

El Support Vector Classifier (SVC/SVM) mostró un comportamiento similar. Sin normalización obtuvo 
un F1-score de 0.260 y un ROC-AUC de 0.630. Al aplicar la estandarización (Z-Score), el rendimiento 
mejoró significativamente, obteniendo un F1-score que subió a 0.642 (+146.9%) y un ROC-AUC de 0.892 
(+41.6%). Esta diferencia valida la importancia de la normalización para el (SVC/SVM), ya que, al ser 
un modelo basado en distancias, se beneficia de que las características tengan escalas homogéneas, esto 
le permite definir mejor sus fronteras de decisión. Aunque su F1-score fue ligeramente inferior al de la 
Regresión Logística con Z-Score, superaron claramente al Árbol de Decisión en este conjunto de datos.

El Árbol de Decisión, sin normalización, obtuvo un F1-score de 0.623 y un ROC-AUC de 0.750. A diferencia 
de la Regresión Logística y SVC/SVM, este modelo mostró un rendimiento estable y notablemente menos 
sensible a las técnicas de normalización. Las variaciones en las métricas fueron mínimas: la puntuación F1 
mostró cambios de +0.02% con MinMax y -0.04% con Z-Score, mientras que el ROC-AUC mostró cambios 
de +0.01% con MinMax y -0.02% con Z-Score, tal como se presenta en la figura 2. 

Figura 2

Imagen de las curvas ROC para el dataset Adult Income

Nota: Comparación de desempeño de los modelos de clasificación con y sin normalización. El modelo 
Regresión Logística con normalización Z-Score demostró el mayor impacto, alcanzando el valor AUC 
promedio más alto (0.904).
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Este comportamiento confirma su estabilidad frente a la escala de las variables, dado que su funcionamiento 
Estos resultados mostrado figura 2, confirma la estabilidad del modelo frente a la escala de las variables, 
dado que su funcionamiento se basa en particiones jerárquicas y no en cálculos de distancia o gradientes. 
Sin embargo, su rendimiento absoluto fue inferior a los modelos de Regresión Logística y SVC/SVM en 
este dataset,

3.1. Dataset Heart Disease

En el conjunto de datos Heart Disease, los modelos de Regresión Logística y SVC/SVM mostraron un 
rendimiento superior respecto al Árbol de Decisión. En la figura 3 se representan las curvas ROC generadas 
por cada modelo, y los resultados numéricos de todas las métricas evaluadas se presentan en la tabla 4.

Tabla 4

Rendimiento promedio de los modelos en el dataset Heart Disease.

Modelo Normalización Accuracy Precision Recall F1-score ROC-AUC

Decision Tree MinMax 0.771205 0.792895 0.793322 0.792681 0.768612

Decision Tree None 0.769019 0.792188 0.789361 0.790468 0.766632

Decision Tree Z-Score 0.767932 0.791812 0.787401 0.789287 0.765651
Logistic 
Regression MinMax 0.863833 0.866660 0.893826 0.879192 0.925464
Logistic 
Regression None 0.868187 0.868999 0.899709 0.883234 0.924430
Logistic 
Regression Z-Score 0.867100 0.871441 0.893807 0.881805 0.924839

SVC/SVM MinMax 0.862746 0.861763 0.897729 0.878906 0.917748

SVC/SVM None 0.717855 0.755416 0.728441 0.740713 0.785553

SVC/SVM Z-Score 0.864926 0.861179 0.903650 0.880992 0.921914

Nota: Valores promedio obtenidos mediante validación cruzada estratificada (k=5), considerando el 
preprocesamiento aplicado (MinMax, Z-Score y ninguno).

Para el conjunto de datos Heart Disease, el modelo de Regresión Logística sin normalización alcanzó un 
F1-score de 0.883 y un ROC-AUC de 0.924. Aplicando la normalización este modelo tuvo un impacto 
mínimo en su rendimiento: el F1-score se mantuvo estable, disminuyendo ligeramente (por ejemplo, 0.879 
con MinMax, -0.5%; 0.882 con Z-Score, -0.1%), mientras que el ROC-AUC mostró un incremento poco 
significativo (0.925 con MinMax, +0.1%; 0.925 con Z-Score, +0.04%). Este comportamiento indica que 
las características de este conjunto de datos poseen una escala intrínsecamente homogénea, lo que permitió 
identificar que este modelo se adapta bien incluso sin normalizar las variables. Su rendimiento fue similar al 
del modelo (SVC/SVM) en este contexto.

Por su parte, el Support Vector Classifier (SVC/SVM) sin normalización registró un F1-score de 0.741 y un 
ROC-AUC de 0.786. A diferencia de la Regresión Logística, el SVC/SVM mostró mejoras más claras tras la 
normalización. Al aplicar la estandarización Z-Score, el F1-score mejoró a 0.881 (un incremento del 18.9%) 
y su ROC-AUC a 0.922 (un incremento del 17.4%). Este resultado evidencia lo mucho que este modelo 
depende de una escala homogénea, al tratarse de un modelo basado en distancias, incluso en conjuntos 
de datos donde otros modelos lineales son menos sensibles al escalado. El SVC/SVM obtiene beneficios 
significativos. En consecuencia, su rendimiento final resultó equiparable al de la Regresión Logística.

El Árbol de Decisión sin normalización obtuvo un F1-score de 0.790 y un ROC-AUC de 0.767. Al igual 
que en el conjunto de datos Adult Income, la normalización tuvo un efecto mínimo en su desempeño: con 
MinMax el F1-score aumentó apenas un 0.3% y el ROC-AUC un 0.3%, mientras que con Z-Score ambos 
indicadores mostraron descensos marginales de 0.1%,  tal como se presenta en la figura 3.
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Figura 3

Curvas ROC para los modelos de clasificación evaluados en el dataset Heart Disease.

Nota: El modelo Regresión Logística, tanto con MinMax como con Z-Score, demostró el mayor impacto, 
alcanzando el valor AUC promedio más alto (0.925). 

En la figura 3 se presenta la capacidad para manejar datos no escalados contrastados con la sensibilidad de la 
Regresión Logística y el SVC/SVM. A pesar de esto, su rendimiento general se mantuvo por debajo del de 
estos modelos, lo que sugiere una menor capacidad para modelar relaciones complejas en los datos,

3.2. Dataset Student Performance (Math)

los resultados del conjunto de datos Student Performance (Math) reflejaron que la normalización no afectó a 
todos los modelos por igual. En la figura 4 se pueden observar las curvas ROC generadas por cada modelo. La 
Tabla 5, recoge los valores promedio obtenidos por cada combinación de modelo y técnica de normalización.

En el conjunto de datos Student Performance (Math), con la Regresión Logística sin normalización se obtuvo 
un F1-score de 0.776 y un ROC-AUC de 0.680. La normalización, tanto con MinMax como con Z-Score, 
mostró cambios mínimos: el F1-score subió ligeramente con MinMax (0.791, +1.9%) pero bajó con Z-Score 
(0.768, -1.0%). En el ROC-AUC, estos cambios fueron poco relevantes (0.682 con MinMax, +0.4%; 0.672 
con Z-Score, -1.1%). Probablemente se relaciona con que las variables ya están en rangos similares, por lo 
que aplicar escalado no ofrece mejoras significativas. Aun así, su rendimiento fue similar al del SVC/SVM.

El Support Vector Classifier (SVC/SVM) sin normalización logró un F1-score de 0.799 y un ROC-AUC 
de 0.713. Tras la aplicación de Z-Score, el F1-score aumentó a 0.811 (+1.5%), mejorando la detección de 
la clase minoritaria. Sin embargo, el ROC-AUC disminuyó a 0.662 (-7.2%). Este contraste evidencia que 
la normalización puede favorecer algunas métricas, pero perjudicar otras, reflejando una relación compleja 
entre el escalado y la capacidad del modelo para diferenciar clases.
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Tabla 5

Rendimiento promedio de los modelos en el dataset Student Performance (Math). 

Modelo Normalización Accuracy Precision Recall F1-score ROC-AUC

Decision Tree MinMax 0.640506 0.740311 0.720755 0.728939 0.598839

Decision Tree None 0.640506 0.740311 0.720755 0.728939 0.598839

Decision Tree Z-Score 0.643038 0.743287 0.720755 0.730298 0.602685
Logistic 
Regression MinMax 0.688608 0.719251 0.879245 0.791215 0.682438
Logistic 
Regression None 0.678481 0.728937 0.830189 0.776051 0.679971
Logistic 
Regression Z-Score 0.668354 0.723660 0.818868 0.768138 0.672279

SVC/SVM MinMax 0.678481 0.685461 0.962264 0.800547 0.669158

SVC/SVM None 0.665823 0.669198 0.992453 0.799375 0.713062

SVC/SVM Z-Score 0.703797 0.707666 0.950943 0.811379 0.661684

Nota: Valores promedio obtenidos mediante validación cruzada estratificada (k=5), considerando el 
preprocesamiento aplicado (MinMax, Z-Score y ninguno).

Para el Árbol de Decisión, sin normalización obtuvo un F1-score de 0.729 y un ROC-AUC de 0.599. Como 
en los otros conjuntos de datos, la normalización tuvo un efecto casi nulo (F1: 0% con MinMax, +0.2% con 
Z-Score; ROC-AUC: 0% con MinMax, +0.6% con Z-Score). Este modelo mantiene un buen desempeño con 
datos sin escalar, aunque su rendimiento global fue inferior al de los otros modelos, indicando una menor 
capacidad para capturar relaciones complejas en este dominio, tal como se presenta en la figura 4. 

Figura 4

Curvas ROC para–Student Performance (Math).

Nota: Se compara el desempeño de los modelos de clasificación con y sin normalización. El modelo SVC sin 
normalización demostró el mayor impacto, alcanzando el valor AUC promedio más alto (0.713).
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3.3. Dataset Student Performance (Portuguese)

Para el dataset Student Performance (Portuguese) se observaron tendencias de rendimiento similares a las 
del conjunto de Matemáticas, destacando que los modelos de Regresión Logística y SVC/SVM superaron 
en desempeño al Árbol de Decisión. La Figura 5 presenta las curvas ROC de los modelos evaluados. Los 
valores numéricos detallados se encuentran en la Tabla 6.

Tabla 6

Rendimiento promedio de los modelos en el dataset Student Performance (Portuguese). 

Modelo Normalización Accuracy Precision Recall F1-score ROC-AUC

Decision Tree MinMax 0.802767 0.893832 0.870709 0.881877 0.650354

Decision Tree None 0.802767 0.893832 0.870709 0.881877 0.650354

Decision Tree Z-Score 0.804305 0.894029 0.872527 0.882880 0.651264

Logistic 
Regression MinMax 0.839726 0.869312 0.954479 0.909750 0.790000

Logistic 
Regression None 0.845903 0.877722 0.950859 0.912584 0.788921

Logistic 
Regression Z-Score 0.839726 0.877943 0.941718 0.908619 0.778600

SVC/SVM MinMax 0.841300 0.846278 0.992727 0.913659 0.813957

SVC/SVM None 0.845915 0.845915 1.000.000 0.916527 0.782966

SVC/SVM Z-Score 0.855134 0.863048 0.985438 0.920103 0.836133

Nota: Valores promedio obtenidos mediante validación cruzada estratificada (k=5), considerando el 
preprocesamiento aplicado (MinMax, Z-Score y ninguno).

En el conjunto Student Performance (Portuguese), la Regresión Logística sin normalización obtuvo un F1-
score de 0.913 y un ROC-AUC de 0.789. Al aplicar MinMax, el F1-score bajó a 0.910 (-0.3%) y el ROC-
AUC subió apenas a 0.790 (+0.1%). Con Z-Score, el F1-score fue de 0.909 (-0.4%) y el ROC-AUC bajó a 
0.779 (-1.3%). Interpretó que este modelo mantiene un rendimiento estable aun cuando se aplican técnicas 
de normalización, algo que también se observó en el conjunto de Matemáticas.

El Support Vector Classifier (SVC/SVM) sin normalización logró un F1-score de 0.917 y un ROC-AUC 
de 0.783. Al usar Z-Score, el F1-score subió ligeramente a 0.920 (+0.4%) y el ROC-AUC mejoró más 
notablemente hasta 0.836 (+6.8%). Esto sugiere que la normalización ayudó al SVC/SVM a mejorar su 
capacidad para separar clases, incluso cuando los datos ya tienen escalas similares.

En cuanto al Árbol de Decisión, obtuvo un F1-score de 0.882 y un ROC-AUC de 0.650 sin aplicar 
normalización. Al igual que en los otros conjuntos, escalar los datos prácticamente no modificó su rendimiento 
(0% con MinMax, +0.1% con Z-Score). Aunque este modelo no necesita escalar los datos para funcionar 
correctamente, en este conjunto volvió a mostrar un desempeño inferior al de los otros algoritmos, lo que 
refuerza la idea de que tiene limitaciones para modelar relaciones más complejas.
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 Figura 5

Curvas ROC para Student Performance (Portuguese) 

Nota: Se compara el desempeño de los modelos de clasificación con y sin normalización. El modelo SVC sin 
normalización demostró el mayor impacto, alcanzando el valor AUC promedio más alto (0.836).

3.4.  Análisis estadístico de las diferencias entre técnicas de normalización

Para validar si las mejoras observadas en las métricas de rendimiento fueron estadísticamente significativas, 
se aplicó la prueba no paramétrica de Wilcoxon para muestras pareadas, considerando los valores de F1-
score obtenidos en los cinco folds de validación cruzada. Aunque se analizaron otras métricas (Accuracy, 
Precision, Recall, ROC-AUC), solo el F1-score evidenció diferencias relevantes entre las condiciones 
de normalización. Los resultados mostraron tendencias a significancia (p ≤ 0.10) en tres comparaciones 
específicas, detalladas en la Tabla 7.

Tabla 7

Comparaciones con evidencia moderada (p ≤ 0.10)

Dataset Modelo Δ F1-score p-value IC 95% 
Inferior

IC 95% 
Superior

Adult Income Logistic 
Regression +0.239 0.0625 0.131 0.347

Adult Income SVC/SVM +0.382 0.0625 0.365 0.399

Heart Disease SVC/SVM +0.140 0.0625 0.111 0.170

Nota: ΔF1-score corresponde a la diferencia entre Z-score y las demás condiciones de preprocesamiento 
(MinMax y None), evaluada con la prueba de Wilcoxon. Se reportan solo comparaciones con evidencia 
moderada (p ≤ 0.10).

En particular, el modelo SVC/SVM presentó mejoras sustanciales con la técnica Z-Score en los conjuntos 
de datos Adult Income y Heart Disease, mientras que la Regresión Logística también evidenció una mejora 
relevante en Adult Income. Estas diferencias fueron consistentes, con intervalos de confianza que no cruzaron 
el cero, lo cual se presenta en la figura 6. 

De los cuatro conjuntos de datos evaluados, solo Adult Income y Heart Disease mostraron diferencias 
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estadísticamente relevantes. En los datasets de desempeño estudiantil, las variaciones en las métricas no 
fueron significativas, por lo que se excluyeron de la tabla resumen.

Figura 6

Forest Plot: Comparaciones con tendencia significativa (p ≤ 0.10)

Nota: Diferencias en F1-score (Z-score - None) con IC 95%; se muestran solo comparaciones con p ≤ 0.10.

Discusión

Los hallazgos presentados en los resultados se interpretan considerando las propiedades algorítmicas, las 
características de los datos y la literatura científica relevante.

Rendimiento General de los Modelos

En términos generales, se observó que los modelos de SVC/SVM y Regresión Logística tendieron a superar 
al Árbol de Decisión en la mayoría de escenarios. En conjuntos de datos complejos como Adult Income 
y Heart Disease, estos dos modelos alcanzaron las mejores puntuaciones en las métricas de ROC-AUC 
y F1-score, con resultados más estables entre las distintas particiones de validación cruzada (ver Figuras 
2-5). Esto coincide con estudios previos que documentan su sensibilidad a la escala de las características 
(de Amorim et al., 2023; Shantal et al., 2023). Este comportamiento no es aislado; en otros trabajos se han 
reportado resultados similares. Por ejemplo, en tareas de predicción médica como la detección de tumores 
cerebrales o la predicción de diabetes, el SVC/SVM ha superado a la Regresión Logística en métricas como 
precisión y F1-score (Rao et al., 2024; Salian et al., 2024). 

El Árbol de Decisión presentó los resultados más bajos en los datasets analizados. Si bien este modelo es 
fácil de interpretar y puede capturar relaciones no lineales simples, su rendimiento disminuye cuando se 
enfrenta a datos con muchas variables o con interacciones más complejas, confirmando los hallazgos de   de 
Amorim et al. (2023). Por ello, otras investigaciones han propuesto para este modelo variantes como los 
árboles aditivos (Goedhart et al., (2025), que intentan mantener la interpretabilidad mientras mejoran la 
precisión.

En cuanto a operatividad, la Regresión Logística se mantiene como una alternativa sencilla y eficiente; 
al aplicarse con regularización, ofrece buena capacidad de generalización. Por su parte, El SVC/SVM, 
aunque requiere mayor ajuste de hiperparámetros y recursos computacionales, ha demostrado mejorar su 
rendimiento y escalabilidad en grandes volúmenes de datos con técnicas como los modelos en cascada o los 
ensambles (Bailly et al., 2022; Dudzik et al., 2024). 

En lo que respecta al preprocesamiento, la normalización de las características demostró ser un factor clave 
para ambos modelos. En particular, el SVC/SVM mostró una mayor sensibilidad a la escala de las variables, 
un hallazgo que coincide con estudios previos donde se destaca el impacto positivo de técnicas como Z-Score 
y MinMax en el rendimiento de este clasificador y otros algoritmos basados en distancia (Rataj et al., 2023; 
Shantal et al., 2023).

Impacto de la Normalización y Aplicaciones Prácticas.

La tabla 8 resume de forma comparativa los efectos de MinMax y Z-Score sobre las métricas de rendimiento, 
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junto con su utilidad práctica en distintos ámbitos de aplicación.

Los patrones observados en cada conjunto de datos mostraron que la eficacia de los modelos dependió tanto 
de la arquitectura como de las propiedades estadísticas del conjunto de datos. En Adult Income y Heart 
Disease, los modelos de regresión logística y SVC/SVM alcanzaron valores más altos en F1-score y ROC-
AUC, incluso en escenarios con desequilibrio de clases. Estos resultados confirman una capacidad solida 
de discriminación en contextos socioeconómicos y clínicos, lo que coincide con lo que se ha publicado 
en la literatura sobre su sensibilidad a la escala de las variables y su eficacia en problemas con estructuras 
complejas  (Bailly et al., 2022; Modhugu et al., 2024). En la práctica, para el sector industrial, comprender 
el impacto de la normalización es fundamental para el desarrollo de modelos predictivos que ayuden a la 
clasificación de perfiles de riesgo socioeconómico, control de calidad, y el análisis de riesgo financiero. La 
precisión y estabilidad de estos modelos pueden traducirse en una reducción de costos, una mejora de los 
procesos y una mitigación de los riesgos operativos y económicos.

Tabla 8

Resumen comparativo del impacto de la normalización en el rendimiento de los modelos por dataset.

Dataset Modelo Mejor 
Normalización Mejora Observada Utilidad Práctica 

(Aplicación Real)

Adult Income

Logistic 
Regression Z-Score F1-score: 0.666 (↑ 56%)          

ROC-AUC: 0.904 (↑ 41%)

Evaluación para beneficios 
sociales o análisis 
de ingresos, con alta 
sensibilidad y equilibrio.

SVC/SVM Z-Score F1-score: 0.642 (↑ 147%)        
ROC-AUC: 0.892 (↑ 41%)

Clasificación de perfiles 
de riesgo en instituciones 
públicas o privadas.

Decision Tree (Sin 
Normalizar)

F1-score: 0.624 (≈ sin 
cambios) ROC-AUC: 0.750 
(≈ sin cambios)

Aplicaciones rápidas 
donde se prioriza la 
interpretabilidad sobre la 
precisión.

Heart Disease

Logistic 
Regression MinMax F1-score: 0.879 (↑ ~5%)         

ROC-AUC: 0.925 (↑ 0.1%)
Diagnóstico clínico con 
variables diversas (edad, 
presión, colesterol).

SVC/SVM Z-Score F1-score: 0.881 (↑ ~19%)       
ROC-AUC: 0.921 (↑ 17%)

Sistemas inteligentes para 
predecir eventos cardíacos.

Decision Tree (Sin 
Normalizar)

F1-score: 0.790 (≈ sin 
cambios) ROC-AUC: 0.767 
(≈ sin cambios)

Escenarios con recursos 
limitados, donde lo simple 
y comprensible es lo más 
útil.

Student Perf. 
(Math)

SVC/SVM Z-Score F1-score: 0.811 (↑ 1.5%)          
ROC-AUC: 0.661 (↓ 7%)

Identificación temprana 
de estudiantes con 
bajo rendimiento en 
matemáticas.

Logistic 
Regression MinMax F1-score: 0.791 (↑ 2%)            

ROC-AUC: 0.682 (↑ 0.3%)

Programas de refuerzo 
académico para 
estudiantes con riesgo 
moderado.

Decision Tree (Sin 
Normalizar)

F1-score: 0.728 (≈ sin 
cambios) ROC-AUC: 0.599 
(≈ sin cambios)

Análisis simple de 
desempeño estudiantil para 
docentes o directivos.

Student Perf. 
(Portuguese)

SVC/SVM Z-Score F1-score: 0.921 (↑ 0.5%)         
ROC-AUC: 0.836 (↑ 6.7%)

Sistemas de alerta 
académica y predicción 
dAe abandono escolar.

Logistic 
Regression Z-Score F1-score: 0.908 (↑ 1.6%)         

ROC-AUC: 0.779 (↓ 1%)
Selección de candidatos 
para becas o programas de 
apoyo escolar.

Decision Tree Z-Score F1-score: 0.882 (↑ 0.2%)         
ROC-AUC: 0.651 (↑ 0.2%)

Herramientas de 
visualización y diagnóstico 
educativo.

Nota: La eficacia de los modelos mostró variaciones influenciadas tanto por la arquitectura utilizada como 
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por las propiedades estadísticas del conjunto de datos.

En el cojunto de Heart Disease, aunque los modelos obtuvieron buenos resultados aun sin normalización, el 
SVC/SVM mejoró significativamente con el escalado, obteniendo una puntuación Z-Score, con aumentos 
cercanos al 19 % en el F1-score y del 17 % en la curva ROC-AUC. Este hallazgo respalda la utilidad y la 
importancia de aplicar la normalización en sistemas que requieran precisión para diagnósticos tempranos, 
coincidiendo con  Bailly et al. (2022).

En los conjuntos Student Performance (Math y Portuguese) la normalización tuvo un impacto más limitado. 
Debido a la naturaleza de sus variables, muchas categóricas o discretas con poca variabilidad, se observaron 
mejoras mínimas en métricas como ROC-AUC, lo cual sustenta lo ya reportado en la literatura (Brooks et 
al., 2023; Uddin & Lu, 2024). Sin embargo, el F1-score se mantuvo elevado en modelos como el SVC/SVM 
y la Regresión Logística, especialmente en el conjunto de datos portugués, donde esta métrica alcanzó un 
valor cercano a 0.91. Este resultado es crucial en el ámbito educativo, porque permite identificar de manera 
temprana a los estudiantes en riesgo de abandono, reducir el coste institucional de los falsos negativos y 
facilitar la implementación de programas preventivos (Adnan Aslam et al., 2025; Bujang et al., 2021).

La comparación entre modelos muestra un patrón claro: el árbol de decisión presentó menor sensibilidad a la 
normalización y mantuvo resultados estables, aunque generalmente inferiores. Su sencillez e interpretabilidad 
lo convierten en una herramienta útil en contextos en los que la aplicabilidad es una prioridad y la precisión 
puede quedar en un segundo plano frente a la facilidad de uso. Por otro lado, SVC/SVM y regresión logística 
se presentan como opciones más robustas cuando se pretende optimizar la capacidad predictiva, con un 
desempeño diferencial según el campo de aplicación: salud, educación o industria.

Limitaciones del Estudio y direcciones futuras

Este estudio se restringió a tres clasificadores (Regresión Logística, SVC/SVM y Árbol de Decisión), 
sin considerar modelos de ensamble ni redes neuronales, y no incluyó una optimización exhaustiva de 
hiperparámetros, lo que pudo influir en el rendimiento observado. Además, el análisis se limitó a datasets 
estructurados y problemas de clasificación binaria, por lo que los hallazgos no son directamente generalizables 
a otros contextos. No se aplicaron técnicas de balanceo de clases, aunque se emplearon métricas robustas 
como F1-score y ROC-AUC. Finalmente, no se descarta la presencia de sesgos en la selección de variables, 
ni se abordó el costo computacional diferencial de los algoritmos, que en el caso de SVC/SVM puede ser 
considerable en bases de datos extensas.

Futuras investigaciones podrían incorporar algoritmos más complejos (ensambles o redes neuronales), 
optimización rigurosa de hiperparámetros, técnicas de rebalanceo de clases, análisis de importancia de 
variables y la extensión a datasets no estructurados o problemas multiclase.

4. Conclusiones

En esta investigación se abordó la evaluación comparativa del rendimiento y la estabilidad de los modelos 
de la Regresión Logística, Máquina de Vectores de Soporte (SVC/SVM) y Árbol de Decisión, así como el 
impacto de las técnicas de normalización (MinMax, Z-Score) en cuatro datasets diversos: Adult Income, 
Heart Disease, y Student Performance (Math y Portuguese). Los resultados que se obtuvieron sirvieron para 
identificar a los modelos de Regresión Logística y SVC/SVM como los clasificadores más robustos y con 
mayor rendimiento en la mayoría de los escenarios. Estos modelos, que se caracterizan por su capacidad 
para modelar relaciones lineales y no lineales mediante kernels, demostraron una superioridad consistente en 
ROC-AUC y F1-score, junto con una baja variabilidad en su rendimiento a través de los folds de validación 
cruzada. Por el contrario, el Árbol de Decisión mostró un rendimiento inferior.

La normalización de características en el proceso de transformación de los datos, demostró ser muy 
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importante, especialmente para el datasets Adult Income, donde la estandarización Z-Score mejoró la 
capacidad predictiva de los modelos. En los otros datasets, su impacto fue menos pronunciado, lo que sugiere 
que la necesidad de normalización depende de las propiedades de escala inherentes de las características. Se 
puede concluir que este estudio proporciona una base empírica para la selección de modelos y estrategias 
de normalización en problemas de clasificación con datos tabulares. Confirma la eficacia de SVC/SVM y la 
Regresión Logística para una amplia gama de aplicaciones, destacando la necesidad de un preprocesamiento 
de datos informado para maximizar el rendimiento predictivo. Estos hallazgos son cruciales para la práctica 
profesional, ya que orientan a los científicos de datos y analistas a tomar decisiones más informadas sobre la 
aplicación de la normalización. Sugiere que, en lugar de una aplicación universal, la elección de la estrategia 
de normalización debe ser un proceso deliberado y basado en las características específicas del dataset y 
el modelo a emplear, optimizando así los recursos computacionales y mejorando la confiabilidad de los 
sistemas predictivos en escenarios reales.
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