AquaTechnica 7(1): 21-27(2025) **ISSN** 2737-6095 **DOI** https://doi.org/10.33936/at.v7i1.7136 https://doi.org/10.5281/zenodo.14742159

Efecto del tamaño del estanque y el número de tolvas alimentadoras en la productividad del camarón *Penaeus vannamei* alimentado con tecnología acústica en una camaronera semi-intensiva de Ecuador

Effect of pond size and number of feeder hoppers on the productivity of the shrimp *Penaeus* vannamei fed with acoustic technology in a semi-intensive shrimp farm in Ecuador

Juan Carlos Valle Masson^{1,4}, Cristóbal Alarcón², César Molina-Poveda³, Miguel Jover-Cerdá⁴

- ¹ Aquaculture Consulting, Guayaquil, Ecuador.
- ² Inversiones Metabaz S.A., Ecuador.
- ³ Skretting Aguaculture Innovation, Ecuador.
- ⁴ Universi¹at Politècnica de Valencia. Instituto de Ciencia y Tecnología Animal. Grupo de Acuicultura y Biodiversidad. Camino de Vera s/n 46022, Valencia, España.

Correspondencia: Miguel Jover-Cerdá E-mail: mjover@dca.upv.es

Artículo original | Original article

Palabras clave crecimiento supervivencia hidrófonos laboratorios de larvas

RESUMEN | Se estudió la productividad de una camaronera ubicada en la provincia de Guayas (Ecuador) analizando 400 ciclos de producción en 32 estanques de 7-27 ha, utilizando alimentadores acústicos asociados a varias tolvas. Los resultados indican una mejora en la producción durante los últimos años, y ventajas productivas en los estanques menores de 10 ha. Se ha constatado el efecto sobre la producción de los diferentes laboratorios suministradores de larvas, lo que aconseja la conveniencia de elegir adecuadamente el origen de las post-larvas. Con relación al número óptimo de alimentadores, los mejores resultados de cosecha final, producción diaria y supervivencia se obtuvieron con 2,0 ha por cada tolva, pero se hace necesario un estudio controlado para obtener conclusiones definitivas.

Keywords growth survival hydrophones larvae laboratories

ABSTRACT | The productivity of a shrimp farm in the Province of Guayas (Ecuador) was studied by analyzing 400 production cycles in 32 ponds of 7-27 ha, using acoustic feeders associated with several hoppers. The results indicate an improvement in production during the last years, and productive advantages in ponds of less than 10 ha The effect on production of the different laboratories supplying larvae has been confirmed, which suggests the convenience of choosing the origin of the post-larvae appropriately. In relation to the optimal number of feeders, the best results were obtained with 2,0 hectares per feeder, but a controlled study is necessary to obtain definitive conclusions.

INTRODUCCIÓN

El camarón o langostino de patas blancas *Penaeus vannamei*, tiene el mayor valor en la producción mundial, 29.000 millones de dólares en 2021 con una producción cercana a los 6,0 millones de toneladas alcanzando en 2022, 6,8 millones de toneladas (FAO, 2022, 2024). La especie es producida en Ecuador mayoritariamente en sistemas semi-intensivos en estanques de tierra y, aunque tradicionalmente el sistema de alimentación más utilizado ha sido el manual por voleo, en los últimos años se están imponiendo los alimentadores automáticos con mecanismos acústicos como la manera más optima de alimentar. Los resultados obtenidos en estanques experimentales de 1000 m² con aireación indican una mayor productividad utilizando hidrófonos (Jescovitch *et al.* 2018, Ullman *et al.* 2019, 2020, Reis *et al.* 2020, 2021) pero existen pocos estudios publicados en condiciones reales de producción con estanques de varias hectáreas y sin aireación (Valle *et al.* 2023). La evolución del uso de los hidrófonos, cuya implementación es costosa, ha llevado a varios productores a asociar un solo hidrófono con varias tolvas de distribución del alimento balanceado (Dodd 2018), introduciendo una nueva variable, el número de tolvas por hectárea, que es conveniente analizar.

El objetivo del presente estudio fue comparar los parámetros productivos obtenidos en una camaronera comercial durante varios años en función del tamaño de los estanques y el número de unidades de alimentación por hectárea.

MATERIAL Y MÉTODOS

Se analizaron datos de producción comercial provenientes de 400 lotes de 32 estanques de entre 7 y 27 ha de una finca camaronera ubicada en la Provincia de Guayas (Ecuador) en los años 2019-2023.

La alimentación suministrada fue a demanda mediante el uso de hidrófonos con varias configuraciones 1 hidrófono AQ1 (con 2, 4 o 6 tolvas de alimentación) cada 6-13 hectáreas, resultando un número variable de hectáreas alimentadas por cada tolva (1,4, 1,6, 1,8, 2,0, 2,2, 2,4, 2,6, 2,8 y 3,2) disponibles 24 h al día. La densidad inicial de siembra fue entre 15 y 27 camarones de 0,10-0,15 g por cada m², y no se empleó ningún sistema de aireación.

La productividad se evaluó mediante la cosecha final (kg/ha) y producción diaria (kg/ha/día), supervivencia final (%), factor de conversión alimenticia, peso final (g) y tasa de crecimiento (g/semana).

El análisis estadístico de los resultados se realizó mediante análisis de varianza (ANOVA) y regresión múltiple, verificando previamente la normalidad y homocedasticidad de los datos, usando el programa *Statgraphics* (*Statistical Graphics System*, Version Plus 5.1 (Herndon, VA, USA). La comparación de medias se hizo utilizando la prueba *a posteriori* de Student-Newman-Keuls considerando un nivel de significación del 0,05.

RESULTADOS Y DISCUSIÓN

Los resultados promedios obtenidos fueron 2.124 kg/ha cosechados, 20,4 kg/ha/día, 24,4 g de peso individual final, una supervivencia de 46% con 104 días de duración del ciclo de engorde, y un factor de conversión alimenticia (FCA) de 1,51.

El efecto del año fue estadísticamente significativo (p<0,05) en la producción final (Tabla 1), la cantidad cosechada en los años 2022 y 2023 fue mayor, 2.314 y 2.642 kg/ha, frente a 1.875, 1.839 y 1.841 kg/ha en los años 2019, 2020 y 2021 respectivamente. La producción diaria mostró la misma tendencia, con 26,2 kg/ha/día en 2023, 21,6 kg/ha/día en 2022 y 17-18 kg/ha/día en 2019-2021, mientras que la supervivencia no mostró diferencias fluctuando entre 44 y 48% a lo largo de los años considerados en este estudio. Las densidades de siembra fueron ligeramente mayores en los años 2022 y 2023, 20 camarones por m², frente a 18 por m² en los años 2019 a 2021, pero no justifican la mayor producción. Asimismo, el peso final de 25-29 g fue significativamente (p<0,05) mayor en los años 2022 y 2023, que los 21-23 g alcanzados entre 2019 y 2021, y también el crecimiento semanal en 2023, 2,07 g, lo que dio lugar a una mayor producción diaria, pero originó un mayor FCA, de aproximadamente 1,6 en 2022 y 2023 frente a 1,4 en 2020 y 2021.

Tabla 1. Parámetros productivos (promedio y error estándar) del camarón *Penaeus vannamei* usando alimentadores acústicos en una camaronera de la provincia de Guayas (Ecuador) durante el periodo 2019-2023.

Table 1. Production parameters (mean and standard error) of the *Penaeus vannamei* shrimp fed with acoustic feeders in a shrimp farm in Guayas province (Ecuador) during the period 2019-2023.

Año	N° lotes	Cosecha final (kg/ha)	Producción diaria (kg/ha/día)	Supervivencia (%)	Factor Conversión	Peso final (g)	Crecimiento (g/semana)
2019	31	$1.875 c \pm 84$	$18,3 \text{ c} \pm 0,83$	$48,4 \pm 2,1$	$1,67 \text{ c} \pm 0,05$	$21,4 c \pm 0,7$	$1,45 c \pm 0,04$
2020	91	$1.839 c \pm 49$	$17,7 \text{ c} \pm 0,48$	$45,5 \pm 1,2$	$1,41 \text{ a} \pm 0.03$	$23,0 c \pm 0,4$	$1,54 \text{ bc} \pm 0.03$
2021	99	$1.841 c \pm 47$	$18,5 \text{ c} \pm 0,46$	$44,0\pm1,2$	$1,35 \text{ a} \pm 0.03$	$21,\!8\;c\pm0,\!4$	$1,54 \text{ bc} \pm 0.02$
2022	95	$2.314 b \pm 48$	$21,6 \text{ b} \pm 0,47$	$47,4\pm1,2$	$1,57 \text{ b} \pm 0.03$	$25,0 b \pm 0,4$	$1,63 \text{ b} \pm 0,03$
2023	84	$2.642 \ a \pm 51$	$26,2 \text{ a} \pm 0,50$	$47,8\pm1,3$	$1,68 c \pm 0.03$	$29,6 \text{ a} \pm 0,4$	$2,07 \ a \pm 0,03$

Promedios con distinta letra presentan diferencias significativas (p < 0.05).

El tamaño del estanque tuvo un efecto significativo en la cosecha final, producción diaria y supervivencia (Tabla 2), pero no en el resto de los parámetros productivos. Los estanques con una superficie media de 7,5 ha presentaron una mayor cosecha, de 2.459 kg/ha, producción diaria, de 24,9 kg/ha/día y supervivencia de 56 % que el resto de los tamaños que estuvieron por encima de 10 ha; los estanques de 25 ha tuvieron una menor supervivencia (40%).

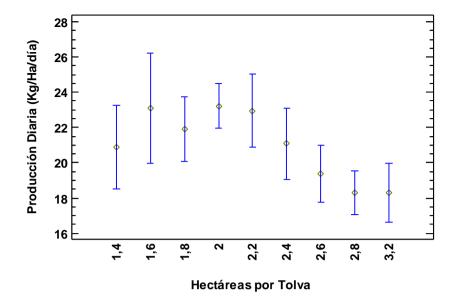
Tabla 2. Parámetros productivos (promedio y error estándar) del camarón *Penaeus vannamei* usando alimentadores acústicos en una camaronera de la provincia de Guayas (Ecuador) en función del tamaño del estanque.

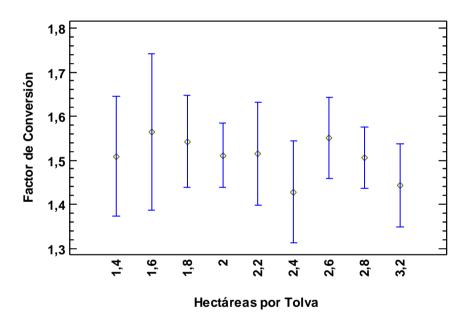
Table 2. Production parameters (mean and standard error) of *Penaeus vannamei* shrimp fed with acoustic feeders in a shrimp farm in Guayas province (Ecuador) according to the size of the pond.

Tamaño (ha)	N° lotes	Cosecha final (kg/ha)	Producción diaria (kg/ha/día)	Supervivencia (%)	Factor de conversión	Peso final (g)	Crecimiento (g/semana)
7,5	38	$2.459 \text{ a} \pm 91$	$24.9 \text{ a} \pm 0.87$	$56,5 \text{ a} \pm 1,8$	$1,56 \pm 0,05$	$24,2 \pm 0,8$	$1,71 \pm 0,05$
10	131	$2.139~b\pm47$	$20,5 b \pm 0,47$	$44,7 b \pm 1,0$	$1{,}54\pm0{,}02$	$24,\!4\pm0,\!4$	$1,64 \pm 0,03$
15	157	$2.109 b \pm 45$	$20,6 b \pm 0,43$	$46.8 b \pm 0.9$	$1,48 \pm 0,02$	$24,3\pm0,4$	$1,64 \pm 0,03$
20	38	$2.001 b \pm 92$	$19.8 b \pm 0.88$	$45,1 \text{ b} \pm 1,8$	$1,47 \pm 0,05$	$25,1\pm0,8$	$1{,}73\pm0{,}05$
25	36	$1.906 b \pm 94$	$18,1 \ b \pm 0,90$	$40.0 c \pm 1.9$	$1{,}49 \pm 0{,}05$	$25,0\pm0,8$	$1,\!67\pm0,\!05$

Promedios con distinta letra presentan diferencias significativas (p < 0.05).

Al analizar los resultados de producción en función del número de hectáreas abastecidas por cada tolva distribuidora de alimento balanceado (Tabla 3) aparecen diferencias significativas en la cosecha final, en la producción diaria y la supervivencia, de forma que la mayor cosecha se produjo con una tolva por cada 2 ha, la mayor producción diaria cuando se asignó una tolva por cada 2 y 1,8 ha, y la mayor supervivencia con una tolva por cada 1,8 ha.


Tabla 3. Parámetros productivos (Promedio y Error Estándar) del camarón *Penaeus vannamei* alimentado con alimentadores acústicos en una camaronera de la provincia de Guayas (Ecuador) en función del número de hectáreas abastecido por cada tolva de alimento balanceado.


Table 3. Production parameters (Mean and Standard Error) of *Penaeus vannamei* shrimp fed with acoustic feeders in a shrimp farm in Guayas province (Ecuador) according to the number of hectares supplied by each dry feed hopper.

Nº has/ tolva	N° lotes	Cosecha final (kg/ha)	Producción diaria (kg/ha/día)	Supervivencia (%)	Factor de conversión	Peso final (g)	Crecimiento (g/semana)
1,4	26	$1.901 \text{ c} \pm 108$	$18,5 \text{ bc} \pm 1,04$	$42,6 \text{ bc} \pm 2,1$	$1,48 \pm 0,06$	$24,0 \pm 0,9$	$1,63 \pm 0,06$
1,6	25	$1.956 \text{ bc} \pm 110$	$18,7 \text{ bc} \pm 1,05$	$40,4 c \pm 2,2$	$1{,}51 \pm 0{,}06$	$25,\!4\pm0,\!9$	$1{,}70 \pm 0{,}07$
1,8	39	$2.290 \text{ ab} \pm 88$	$23,4 \text{ a} \pm 0.85$	$55,6 \text{ a} \pm 1,7$	$1{,}56 \pm 0{,}05$	$24,3\pm0,8$	$1{,}75\pm0{,}05$
2,0	65	$2.400 \text{ a} \pm 68$	$23,4 \text{ a} \pm 0,66$	$49.8 \text{ b} \pm 1.4$	$1,51 \pm 0,04$	$24,5\pm0,6$	$1,\!67\pm0,\!04$
2,2	37	$2.022 \text{ ab} \pm 91$	$20,7 \text{ abc } \pm 0,87$	$49,0 \text{ b} \pm 1,8$	$1,\!48 \pm 0,\!05$	$24,7\pm0,8$	$1{,}78 \pm 0{,}05$
2,4	26	$2.178 \text{ abc} \pm 108$	$21,7 \text{ ab} \pm 1,04$	$43,0 \text{ bc} \pm 2,1$	$1,43 \pm 0,06$	$24,4\pm0,9$	$1{,}70 \pm 0{,}06$
2,6	56	$2.193~abc \pm 74$	$20,9 \text{ abc } \pm 0,71$	$46,5 \text{ bc} \pm 1,5$	$1{,}57 \pm 0{,}04$	$24,5\pm0,6$	$1,63 \pm 0,04$
2,8	87	$2.042 \text{ bc} \pm 59$	19,3 bc \pm 0,57	$42,9 \text{ bc} \pm 1,2$	$1{,}52 \pm 0{,}03$	$24,3\pm0,5$	$1,62 \pm 0,03$
3,2	39	$1.894 c \pm 88$	$17,9 \text{ c} \pm 0,85$	$43.9 \text{ bc} \pm 1.8$	$1,\!48 \pm 0,\!05$	$24,0\pm0,8$	$1,\!60 \pm 0,\!05$

Promedios con distinta letra presentan diferencias significativas (p < 0.05).

Al estudiar la producción diaria considerando la superficie del estanque como covariable, igualmente el mayor valor se obtuvo con 1,6-1,8-2,0-2,2 respecto a 2,6-2,8-3,2 hectáreas por tolva (Fig. 1). El FCA no mostró diferencias significativas (p > 0.05) entre las diferentes áreas alimentadas por cada tolva (Fig. 1).

Figura 1. Producción diaria y factor de conversión del camarón *Penaeus vannamei* alimentado con comederos acústicos en una camaronera de la provincia de Guayas (Ecuador) considerando la superficie del estanque como covariable.

Figure 1. Daily production and conversion factor of the shrimp *Penaeus vannamei* fed with acoustic feeders in a shrimp farm in Guayas province (Ecuador) considering pond surface as covariable.

Al llevar a cabo una regresión múltiple de la producción se observa una alta correlación (p < 0.001) de la superficie, peso final e interacción densidad-supervivencia, que confirman los anteriores resultados:

Producción (kg/ha) = -1.844 – 5,33 * Superficie + 82,57 * Peso final + 0,023 * Densidad * Supervivencia $(r^2 \text{ ajustado} = 91.8 \%)$ Producción Diaria (kg/ha/día) = -10,11 – 0,065 * Superficie + 0,53 * Peso final + 0,000218 * Densidad * Supervivencia $(r^2 \text{ ajustado} = 66.5 \%)$

El parámetro más importante en una camaronera es la producción final y en el presente estudio el 73,5 % de los ciclos se mantuvo entre 1500-2500 kg/ha, para el periodo evaluado 2019-2023 mostrando una gran variación debida a otros factores productivos (Fig. 2), como el origen de los camarones. No obstante, el 7,75 % de los lotes presentó una producción mayor de 3000 kg/ha, ligadas a valores de supervivencia superiores a 55%, lo que abre la posibilidad de mejoras en el sistema de producción. El máximo valor fue de 4552 kg/ha, en un estanque de 8 ha, con una supervivencia del 75% y un peso promedio final de 29,5 g, pero con una duración del ciclo de engorde de 140 días y un FCA de 1,73, por lo que sería necesario un análisis económico para determinar las óptimas condiciones de productividad.

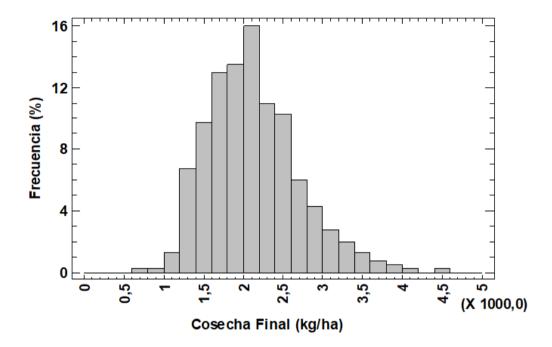


Figura 2. Frecuencia relativa de la cosecha final del camarón *Penaeus vannamei* usando alimentadores acústicos en una camaronera de la provincia de Guayas (Ecuador).

Figure 2. Relative frequency of the final harvest of the shrimp *Penaeus vannamei* fed with acoustic feeders in a shrimp farm in Guayas province (Ecuador).

En la camaronera se sembraron ejemplares procedentes de hasta 39 laboratorios de producción de larvas, pero de 25 de ellos solo ocasionalmente (entre 1 y 4 ciclos). Los resultados de producción de los 9 laboratorios más utilizados (76% de los ciclos) indicaron diferencias estadísticamente significativas en la cosecha final, con 2,3 toneladas por hectárea en los mejores, y tan solo 1,8 toneladas por hectárea en el peor; en la producción diaria, con 23,9 kg/ha/día en el mejor y 18,1 kg/ha/día en el peor; y en el crecimiento, con un máximo de 1,92 g/semana. Mientras que la supervivencia fue similar para todos los laboratorios, del orden de 46 5, y sin diferencias estadísticas (p > 0,05) en el FCA (1,50) y el peso medio final (24,5 g), por lo que la elección de los mejores laboratorios, supondría una mejora en la productividad.

La productividad o cosecha final, de 2.123 kg/ha, fue mayor que la reportada por Napaumpaipom *et al.* (2013) de 1.155 kg/ha y por Valle *et al.* (2023) de 1.500 kg/ha, pero fue menor que la citada por Ullman *et al.* (2019) y Reis *et al.* (2021, 2022), del orden de 4.500-8.000 kg/ha con densidades de siembra de 90 PL/m² y utilizando aireadores y 1 hidrófono-tolva por cada 0,1 ha, lo que podría indicar un efecto de la disponibilidad de puntos de distribución del balanceado. Así, la producción en los estanques con 1 tolva por cada 3,2 ha fue estadísticamente menor que en los estanques con 1 tolva por cada 1,8-2,2 ha, los cuales tuvieron además la mayor supervivencia. No obstante, los bajos rendimientos obtenidos en los estanques con 1 tolva por cada 1,4 y 1,6 ha fueron debidos a que éstos tuvieron una superficie mayor a 20 ha, y ya se ha comentado el efecto negativo de esta variable en la productividad.

Tabla 4. Parámetros productivos (Promedio y Error Estándar) del camarón *Penaeus vannamei* usando alimentadores acústicos en una camaronera de la provincia de Guayas (Ecuador) en función del origen de los ejemplares.

Table 4. Production parameters (Mean and Standard Error) of the shrimp *Penaeus vannamei* fed with acoustic feeders in a shrimp farm in Guayas province (Ecuador) according to the origin of the specimens.

Laboratorio	N° lotes	Cosecha final (kg/ha)	Producción Diaria (kg/ha/día)	Supervivencia (%)	Crecimiento
		(Kg/IIa)	Diaria (kg/iia/uia)	(70)	(g/semana)
A	10	$2.332 \text{ a} \pm 169$	$23,7 \text{ a} \pm 1,65$	$46,7 \pm 3,6$	$1,92 \text{ a} \pm 0,10$
В	19	$2.313 \text{ a} \pm 122$	$22,0 \text{ ab} \pm 1,20$	46.5 ± 2.6	$1,68 \text{ ab} \pm 0.07$
C	11	$1.791 \text{ b} \pm 160$	$19,0 \text{ ab} \pm 1,57$	$38,9 \pm 3,4$	$1,76 \text{ ab} \pm 0,10$
D	47	$1.894 \text{ ab} \pm 78$	$18,1 \text{ b} \pm 0,76$	45.8 ± 1.6	$1,53 \text{ b} \pm 0.05$
E	57	$2.045 \text{ ab} \pm 71$	$20,2 \text{ ab} \pm 0,69$	43.0 ± 1.5	$1,69 \text{ ab} \pm 0,04$
F	32	$2.097 \text{ ab} \pm 94$	$20,3 \text{ ab} \pm 0,92$	$43,6 \pm 2,0$	$1,66 \text{ ab} \pm 0,06$
G	77	$2.342 a \pm 61$	$22,7 \text{ ab} \pm 0,59$	$49,2 \pm 1,3$	$1,71 \text{ ab} \pm 0.04$
H	17	$1.931 \text{ ab} \pm 129$	$19,2 \text{ ab} \pm 1,26$	$47,2 \pm 2,7$	$1,58 \text{ b} \pm 0,08$
I	16	$2.076 \text{ ab} \pm 133$	$18,5 \text{ b} \pm 1,30$	$47,4 \pm 2,8$	$1,51 \text{ b} \pm 0.08$
Nivel Sig. ((P)	0,0001	0,0001	0,0388	0,0041

Promedios con distinta letra presentan diferencias significativas (p < 0.05).

Por otra parte, existe una recomendación práctica entre los productores sobre el uso de los alimentadores acústicos en función de la biomasa de camarones del estanque, que es de una tolva por cada 5.400-6.800 kg, lo que coincide con los resultados de Dodd (2018), que obtuvo un mayor crecimiento (1,99 g/semana) usando un AQ1 con 8 tolvas alimentadoras, 6.000 kg de biomasa por tolva en comparación con un AQ1 con 4 tolvas alimentadoras, 12.000 kg de biomasa por tolva (1,79 g/semana). En el presente trabajo, la mayor producción de 2.400 kg/ha, obtenida usando una tolva para cada dos hectáreas, supone 4.800 kg por tolva, mientras que la peor producción, de 1.894 kg/ha usando una tolva por cada 3,2 hectáreas, supone 6.061 kg por tolva, lo que sugiere una revisión de las mencionadas recomendaciones.

Existen aspectos como la ubicación de las tolvas en los estanques, su distancia y disposición, que no han podido ser tenidas en consideración por no disponer de la información, y que podrían modificar los resultados obtenidos.

CONCLUSIONES Y RECOMENDACIONES

Existe una mejora productiva del camarón en los estanques de menor superficie (< 10 ha), lográndose mayor peso final, así como también incrementos en la supervivencia y la producción en los últimos años. Asimismo, la elección de los laboratorios para la crianza de postlarvas con una buena genética también es decisiva para alcanzar una mayor producción.

El presente estudio es una primera aproximación a la determinación del número de tolvas de alimentación por hectárea, usando datos históricos de camaroneras, que mostró una relación óptima de una tolva por cada 2 ha, por lo que sería necesaria la realización de ensayos controlados en condiciones reales, pero definiendo claramente el número de tolvas, y su ubicación en estanques de superficie similar, para poder optimizar la alimentación con alimentadores acústicos. Asimismo, la disponibilidad de la respuesta acústica de los camarones alimentados con las diferentes disposiciones de hidrófonos y tolvas de alimentación sería muy interesante para evaluar el comportamiento alimentario y entender los resultados productivos.

Por último, la mejora de la gestión de la biomasa con el empleo de aireación sería muy conveniente, sobre todo cuando se incrementa la densidad, para aumentar la producción y que puede ser afectada por el numero óptimo de tolvas por área de producción.

Declaración de conflicto de interés

Los autores declaran no tener conflicto de intereses.

Declaración de buenas prácticas con los animales

Este estudio se realizó con datos históricos de producción del camarón *Penaeus vannamei* y no incurrió en prácticas de manipulación directa con los animales.

Declaración de contribución de autoría (CrediT)

Juan Carlos Valle Masson: Preparación de la base de datos y del manuscrito; Cristóbal Alarcón: Recopilación y selección de datos de producción; César Molina-Poveda: Revisión del manuscrito y discusión de resultados; Miguel Jover-Cerdá: Análisis estadístico y revisión de resultados y discusión.

REFERENCIAS

- Dodd R. (2018). Industrialización de la Alimentación en la Acuicultura. XII Simposio Centroamericano de Acuicultura SIMCA, Cholutecas (Honduras).
- FAO (2022). The State of World Fisheries and Aquaculture. Towards Blue Transformation. Rome. https://doi.org/10.4060/cc0461en.
- FAO (2024). El Estado Mundial de la Pesca y la Acuicultura. La transformación azul en acción. Roma. https://doi.org/10.4060/cd0683es.
- Napaumpaiporn T., Churchird N., Taparhudee W. (2013). Study on the efficiency of three different feeding techniques in the culture of Pacific white shrimp (*Litopenaeus vannamei*), Kasetsart University *Fisheries Research Bulletin* 37(2): 8-16.
- Reis J., Novriadi R., Swanepoel A., Jingping G., Rhodes M., Davis A. (2020). Optimizing feed automation: timerfeeders and on demand systems in semi-intensive pond culture of shrimp *Litopenaeus vannamei*. *Aquaculture* 519: 734759 https://doi.org/10.1016/j.aquaculture.2019.734759.
- Reis J., Weldon A., Ito P., Stites W., Rhodes M., Davis A. (2021). Automated feeding systems for shrimp: Effects of feeding schedules and passive feedback systems. *Aquaculture* 541: 736800 https://doi.org/10.1016/j.aquaculture.2021.736800.
- Ullman C., Rhodes M. A., Hanson T., Cline D., Davis, A. (2019a). Effect of four different feeding systems on the pond production of Pacific White Shrimp, *Litopenaeus vannamei*. *Journal of the World Aquaculture Society* 50: 54-64 http://dx.doi.org/10.1111/jwas.12531.
- Ullman C., Rhodes M. A., Davis A. (2019b). Feed management and the use of automatic feeders in the pond production of Pacific white shrimp *Litopenaeus vannamei*. *Aquaculture* 498: 44-49 https://doi.org/10.1016/j.aquaculture.2018.08.040.
- Valle J.C., Molina-Poveda C., Jover-Cerdá M. (2023). The effects of manual, time, and sound feeding systems on the growth and production of white shrimp (*Litopenaeus vannamei*) in semi-intensive farming systems in Ecuador. *International Journal of Aquaculture* 13(8): 1-14 https://doi.org/10.5376/ija.2023.13.0008.

