POLIÉSTERES COMO BIOMATERIALES. UNA REVISIÓN
Publicación Cuatrimestral. Vol. 6, No 2, Mayo/Agosto, Ecuador (p. 113-136) 135
Park, S., Kim, T., Kim, M., Lee, S., & Lim, S. (2012). Advanced bacterial polydroxyalkanoates: towards a versatile and
sustainable platform for unnatural tailor-nade polyesters. Biotech. Adv. 30(6):1196-1206. DOI:
10.1016/j.biotechadv.2011.11.07
Penczek, S., Pretula, J., & Slomkowski, S. (2021). Ring-opening polymerization. Chem. Teacher Int. 3(2):1-25. DOI:
10.1515/cti-2020-0028
Phan, H., Kortsen, K., Englezou, G., Couturaud, B., Nedomay, A., Pearce, A., & Taresco, V. (2020). Functional initiators
for the ring-opening polymerization of polyesters and polycarbonates: an overview. J. Polym. Sci. 58(14):1911-
1923. DOI: 10.1002/pol.20200313
Philipe, G., Sørensen, I., Jiao, C., Sun, X., Fei, Z., Domozych, D., Rose, J. (2020). Cutin and suberin: assembly and
origins of specialized lipidic cell wall scaffolds. Curr. Opin. Plant. Biol. 55:11-20. DOI:
10.1016/j.pbi.2020.01.008
Qi, C., Jia, S., Liu, G., Chen, L., Wei, X., Hu, Z., Chi, Z. & Chi, Z. (2021). Polymalate (PMA) biosynthesis and its
molecular regulation in Aureobasidium spp. Int. J. Biol. Macromol. 174:512-518. DOI:
10.1016/j.ijbiomac.2021.02.008
Rivera-Briso, A., & Serrano-Aroca, A. (2018). Poly(3-hydroxybutyrate-co-hydroxyvalerate): enhancement strategies for
advanced applications. Polymers. 10(7):732. DOI: 10.3390/polym10070732
Saito, T., Aizawa, Y., Yamamoto, T., Tajima, K., Isono, T., & Satoh, T. (2018). Alkali metals carboxylate as an eficient
and simple catalyst for ring-opening polymerization of cyclicv esters. Macromolecules. 51(3):689-696. DOI:
10.1021/acs.macromol.7b02566
Santoro, O., Zhang, X., & Redshaw, C. (2020). Synthesis of biodegradable polymers: a review on the use of Schiff-base
metal complexes as catalysts for the ring opening polymerization(rop) of cyclic esters. Catalysts. 10(7):800.
DOI: 10.3390/catal10070800
Seyednejard, H., Ghaseeemi, A., Van Nostrum, C., Vermenden, T & Hennink, W. (2011). Functional aliphatic polyesters
for biomedical applications. J. Control. Release. 52(1):168-176. DOI: 10.1016/j.conrel.2010.12.016
Shah, A., Kato, S., Shintani, N., Kamini, N., & Nakajima-Kambe, T. (2014). Microbial degradation of aliphatic and
aliphatic-aromatic co-polyesters. Appl Microbiol Biotechnol 98(8):3437–3447. https://doi.org/10.1007/s00253-
014-5558-1
Shah, T., & Vasava, D. (2019). A glimpse of biodegradable polymers and their biomedical applications. e-polymers.
19(1): 385-410. DOI: 10.1515/epoly-2019-0041
Shasteen, C., & Choi, Y. (2011). Controlling degradation rate of poly(lactic acid) for its biomedical applications. Biomed.
Eng. Lett. 1:663. DOI: 10.1007/s13534-011-0025-8
Shin, I., Jung, M., Kim, K., Seol, Y., Park, Y., Park, W., & Lee, S. (2010). Novel three-dimensional scaffolds of poly(L-
lactic acid) microfibers using electrospinning and mechanical expansion: Fabrication and bone regeneration. J.
Biomed. Mater. R. B. 95B(1):150-160. DOI: 10.1002/jbm.b.31695
Srichana, T., & Domb., A. (2009). Polymeric Biomaterials. In R. Narayan (Ed.), Biomedical materials, Springer, USA.
pag. 83-118.
Sudesh, K., & Doi, Y. (2005). Polyhydroxyalkanoates. In C. Bastioli (Edit), Handbook of Biodegradable Polymers,:
Rapra Technology Limited, United Kingdom. Pag. 219-227).
Sutar, A., Maharana, T., Dutta, S., Chen, C., Lin, C. (2010). Rimg-opening polymerzation by lithium catalysts: an
overview. Chem. Soc. Rev. 39(5):1724-1736. DOI:10.1039/B912806A
Tábi, T., Sajó, I., Szabó, F., Luyt, A., Kovács, J. (2010). Crystalline structure of annealed polylactic acid and its relation
to processing. Exp. Polym.Lett. 4(10): 659–668. DOI: 10.3144/expresspolymlett.2010.80
Tamura, M., Matsuda, K., Nakagawa, Y., & Tomishige, K. (2018). Ring-opening polymerization of trimethylene
carbonate to poly(trimethylene carbonate) diol over a heterogeneous high-temperature calcined CeO2 catalyst.
Chem. Commun., 54:14017-14020. DOI: 10.1039/c8cc08405j
Tan, C., Xiong, S., Chen, C. (2018). Fast and controlled ring-opening polymerization of cyclic esters by alkoxides and
cyclic amides. Macromolecules. 51(5):2048-2053. DOI: 10.1021/acs.macromol.7b02697
Tathe, A., Ghodke, M., & Nikalje, A. (2010). A brief review: biomaterials and their application. Int. J. Pharm. Pharm.
Sci. 2(4):19-23.
Tong, R. (2017). New chemistry in functional polyesters. Ind. Eng. Chem. Res., 56(1):4207-4219. DOI:
10.1021/acs.iecr.7b00524
Vileta, C., Sousa, A., Fonseca, A., Serra, A., Coelho, J., Freire, C., Silvestre, A. (2014). The quest for ustainable
polyesters-insights into the future. Polym. Chem. 5:3119-3141. DOI: 10.1039/c3py01213a
Vroman, I., & Tighzert, Lan. (2009). Biodegradable Polymers. Materials, 2(2): 307–344. DOI: 10.3390/ma2020307
Washington, K., Kularatne, R., Karmegam, V., Biewer, M., Stefan, M. (2017). Recent advances in aliphatic polyesters
for drug delivery applications. WIREs Nanomed Nanobiotechnol. 9:e1446. doi: 10.1002/wnan.1446
Woodard, L., & Grunlan, M. (2018). Hydrolitic degradation and erosion of polyester biomaterials. ACS Macro Lett.
7(8):976-982. DOI: 10.1021/acsmacrolett.8b00424
Woodruff, M., & Hutmacher, D. (2010). The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog.
Polym. Sci. 35(10):1217-1256. DOI: 10.1016/j.progpolymsci.2010.04.002
Xiao, R., Zeng, Z., Zhou, G., Wang, J., Li, F., & Wang, A. (2010). Recent advances in PEG–PLA block copolymer
nanoparticles. Int. J. Nanomedicine. 5: 1057–1065. DOI: 10.2147/IJN.S14912