Poliésteres como Biomateriales. Una Revisión

POLIÉSTERES COMO BIOMATERIALES. UNA REVISIÓN

Autores/as

  • Jesús Miguel Contreras Ramírez Universidad de Los Andes
  • Dimas Alejandro Medina
  • Meribary Monsalve

DOI:

https://doi.org/10.33936/rev_bas_de_la_ciencia.v6i2.3156

Palabras clave:

Biomateriales, Polímeros biodegradables, poliésteres, policarbonatos, biopolímeros

Resumen

  Los materiales biodegradables se utilizan en envases, agricultura, medicina y otras áreas. Para proporcionar resultados eficientes, cada una de estas aplicaciones demanda materiales con propiedades físicas, químicas, biológicas, biomecánicas y de degradación específicas. Dado que, durante el proceso de síntesis de los poliésteres todas estas propiedades pueden ser ajustadas, estos polímeros representan excelentes candidatos como materiales sintéticos biodegradables y bioabsorbibles para todas estas aplicaciones. La siguiente revisión presenta una visión general de los diferentes poliésteres biodegradables que se están utilizando actualmente y sus propiedades, así como nuevos desarrollos en su síntesis y aplicaciones.   Palabra clave: biomateriales, polímeros biodegradables, poliésteres, policarbonatos, biopolímeros.   Abstract

Biodegradable materials are used in packaging, agriculture, medicine, and many other areas. These applications demand materials with specific physical, chemical, biological, biomechanical, and degradation properties to provide efficient results. Since all these properties can be adjusted during the polyesters synthesis process, these polymers represent excellent candidates as biodegradable and bio-absorbable synthetic materials for all these applications. Here, in this review is presented an overview of the different biodegradable polyesters currently used, their properties, and new developments in their synthesis and applications.

 Keywords: biomaterials, biodegradable polymers, polyesters, polycarbonates, biopolymers.

Descargas

La descarga de datos todavía no está disponible.

Citas

Agarwal S. (2010). Chemistry, chances and limitations of the radical ring-opening polymerization of cyclic ketene acetals for the synthesis of degradable polyesters. Polym. Chem. 1:953-964. DOI: 10.1039/c=PY00040J
Ahmed, J., Zhang, J., Song, Z., & Varshnet, S.K. (2009). Thermal properties of polylactides: effect of molar mass and nature of lactide isomer. J. Therm. Anal. Calorim. 95(3):957–964. DOI: 10.1007/s10973-008-9035-x
Ahmed, J., & Varshney, S. (2010). Polylactides-Chemistry, Properties and Green Packaging Technology: A Review. Int. J. Food. Prop. 14(1):37-58. DOI: 10.1080/10942910903125284
Albertsson, A., & Varma, I. (2002). Aliphatic Polyesters: Synthesis, Properties and Applications. Adv. Polym. Sci. 157:1-40. DOI: 10.1007/3-540-45734-8_1
Albertsson, A., & Varma, I. (2003). Recent Developments in Ring Opening Polymerization of Lactones for Biomedical Applications. Biomacromolecules, 4(6):1466-1486. DOI: 10.1021/bm034247a
Arbaoui, A., & Redshaw, C. (2010). Metal catalysts for ε-caprolactone polymerization. Polym. Chem. 1(6):801-826. DOI: 10.1039/B9PY00334G
Bailey, W., Ni, Z., & Wu, S. (1992). Synthesis of poly-ε-caprolactone via a free radical mechanism. Free radical ring-opening polymerization of 2-methylene-1,3-dioxepane. J. Polym. Sci. Polym. Chem. Edi., 20(11):3021–3030. DOI: 10.1002/pol.1982.170201101
Branningan, R., & Dove, A. (2017). Synthesis, properties and applications of hydrolytically degradable materials based on aliphatic polyesters and polycarbonates. Biomater. Sci. 5:9-21. DOI: 10.1039/C6BM00584E
Cayuela, J., Bounor-Legaré, V., Cassagnau, Ph., & Michel, A. (2006). Ring-Opening Polymerization of ε-Caprolactone Initiated with Titanium n-Propoxide or Titanium Phenoxide. Macromolecules, 39(4):1338-1346. DOI: 10.1021/ma051272v
Champetier, G., & Monnerie, L. (1973). Introducción a la química macromolecular. Madrid, España, Espasa-Calpe.
Chandure, A., Umare, S., & Pandey, R. (2008). Synthesis and biodegradation studies of 1,3-propanediol based aliphatic poly(ester carbonate)s. Eur. Polym. J., 44:2068-2086. DOI: 10.1016/j.eurpolymj.2008.01.001
Chang, Y., & Liang, L. (2007). Preparation and structural characterization of group 1 metal complexes containing a chelating biphenolato phosphine ligand. Inorg. Chim. Acta. 360(1):136-142. DOI: 10.1016/j.ica.2006.07.050
Chen, H., Zhang, J., Lin, Ch., Reibenspies, J., & Miller, S. (2007). Efficient and controlled polymerization of lactide under mild conditions with a sodium-based catalyst. Green Chem. 9(10):1038-1040. DOI: 10.1039/B705622B
Chen, J., Tian, B., Yin, X., Zhang, Y., Hu, D., Hu, Z., Lui, M., Pan, Y., Zhao, J., Li, H., Hou, C., Wang, J., & Zhang, Y. (2007). Preparation, characterization and transfection efficiency of cationic PEGylated PLA nanoparticles as gene delivery systems. J. BIotechnol. 130(2):107-113. DOI: 10.1016/j.jbiotec.2007.02.007
Contreras, J., & Dávila, D. (2006). Ring-opening copolymerization of L-lactide with ε-caprolactone initiated by diphenylzinc. Polym. Int. 55(9):1049-1056. DOI: 0.1002/pi.2050
Contreras, J., Vivas, M., & Torres, C. (2007). Polimerización de lactonas usando diferentes sistemas difenilcinc-coiniciador. Avances en Química, 2(2): 33-38.
Contreras, J., Medina, D., López-Carrasquero, F., & Contreras, R. (2013) Ring-opening polymerization of ε-caprolactone initiated by samarium acetate. J Polym Res. 20:244. DOI 10.1007/s10965-013-0244-z
Contreras, J., Pestana, J., López-Carrasquero, F., & Torres, C. (2014). Synthesis of ε-caprolactone-b-L-lactida block copolymers by mean sequential copolymerization, using diphenylzinc as initiator. Polym. Bull. 71(7):1661-1674. DOI: 10.1007/s00289
Contreras-Ramírez, J., & Monsalve, M. (2019). Use of samarium (III) acetate as initiator in ring-opening polymerization of trimethylene carbonate. J. Macromol. Sci., Part A, 56(12):1114-1120, DOI: 10.1080/10601325.2019.1658527
Contreras-Ramírez, J., Medina, D., López-Carrasquero, F., & Contreras, R. (2019). Ring-Opening Polymerization of L-lactide Initiated by Samarium(III) Acetate. Current Applied Polymer Science, 3:1-8. DOI: 10.2174/2452271602666181114094536
Contreras-Ramírez, J., & Monsalve, M. (2021). Ring-Opening Polymerization of 2,2-Dimethyltrimethylene Carbonate Using Samarium Acetate(III) as an Initiator. Polym. Sci. B. 6(2):94–102.
Contreras-Ramírez, J., & Monsalve, M. (2020). Synthesis and characterization of poly(1- methyltrimethylene carbonate) (PMTMC) by mean ring opening polymerization. Revista Bases de la Ciencia, 5(3): 21-36. DOI: 10.33936/rev_bas_de_la_ciencia.v%vi%i.1863
Dalton, P., Woodfield, T., & Hutmacher, D. (2009). Publisher’s note: Erratum to: SnapShot: polymer scaffolds for tissue engineering. Biomaterials, 30(4):701-702. DOI: 10.1016/S0142-9612(08)00900-9
Dutta, S., Hung, W., Huang, B., & Lin, Ch. (2012). Recent Developments in Metal-Catalyzed Ring-Opening Polymerization of Lactides and Glycolides: Preparation of Polylactides, Polyglycolide, and Poly(lactide-co-glycolide). Adv. Polym. Sci. 245:219-283. DOI: 10.1007/12_2011_156
Edlund, U., Albertsson, A. (2003). Polyesters based on diacid monomers. Adv. Drug Deliver Rev. 55:585-609. DOI: 10.1016/S0169-409X(03)00036-X.
Endo, T. (2009). General Mechanisms in Ring - Opening Polymerization. In P. Dubois, O. Coulembier, y J. Raquez (Ed.), Handbook of Ring-Opening Polymerization, Wiley-VCH, Weinhein. Pag. 53-62. DOI: 10.1002/9783527628407.ch2
Fetters, L., Lohse, D., Richter, D., Witten, T., & Zirkel, A. (1994). Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties. Macromolecules, 27(17):4639–4647. DOI: 10.1021/ma00095a001
Griffith, L. (2000). Polymeric biomaterials. Acta Mater. 48(1):263-277. DOI: 10.1016/S1359-6454(99)00299-2
Gowda, R., & Chakraborty, D. (2010). Zinc acetate as a catalyst for the bulk ring opening polymerization of cyclic esters and lactide. J. Mol. Catal. A-Chem. 333(1-2):167-172. DOI: 10.1016/j.molcata.2010.10.013
Gowda, R., Chakraborty, D., & Ramkumar, V. (2010). Aryloxy and benzyloxy compounds of hafnium: Synthesis, structural characterization and studies on solvent-free ring-opening polymerization of ε-caprolactone and δ-valerolactone. Polymer, 51(21):4750-4759. DOI: 10.1016/j.polymer.2010.08.031.
Gowda, R., Chakraborty, D., & Ramkumar, V. (2011). Aryloxy and benzyloxy compounds of zirconium: Synthesis, structural characterization and studies on solvent-free ring-opening polymerization of ε-caprolactone and δ-valerolactone. J. Organomet. Chem. 696(2):572-580. DOI: 10.1016/j.jorganchem.2010.09.026
Gupta, A., & Vimal, K. (2007). New emerging trends in synthetic biodegradable polymers – Polylactide: A critique. Eur. Polym. J., 43:4053–4074. DOI: 10.1016/j.eurpolymj.2007.06.045
Hutmacher, D. (2001). Scaffold design and fabrication technologies for engineering tissues-state of the art and future perspectives. J. BIomat. Sci-Polym. E. 12(1), 107-124. DOI: 10.1163/156856201744489
Iwasa, J., Engebretsen, L., Shima, Y., & Ochi, M. (2009). Clinical application of scaffolds for cartilage tissue engineering. Knee Surg. Sport Tr. A. 17(6):561-577. DOI: 10.1007/s00167-008-0663-2
Jamshidi, K., Hyon, S., & Ikada, Y. (1988). Thermal characterization of polylactides. Polymer, 29 (12):2229–2234. DOI: 10.1016/0032-3861(88)90116-4
Jérome, C., & Lecomte, P. (2008). Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization. Adv. Drug Delivery Rev. 60(9):1056-1076. DOI: 10.1016/j.addr.2008.02.008
Jie, P., Venkatraman, S., Min, F., Chiang, B., & Huat, G. (2005). Micelle-like nanoparticles of star-branched PEO-PLA copolymers as chemotherapeutic carrier. J. Control Release. 110(1):20-33. DOI: 10.1016/j.jconrel.2005.09.011
Kasperczyk, J., & Bero, M. (2000). Stereoselective polymerization of racemic dl-lactide in the presence of butyllithium and butylmagnesium. Structural investigations of the polymers. Polymer, 41(1):391-395. DOI: 10.1016/S0032-3861(99)00421-8
Kricheldorf, H., & Kreiser-Saunders, I. (1990). Polylactones, 19a) Anionic polymerization of Glactide in solution. Makromolekul. Chem. 191(5):1057-1066. DOI: 10.1002/macp.1990.021910508
Kricheldorf, H., & Stricker, A. (2000). Polymers of carbonic acid 29. Bu2SnOct2—initiated polymerizations of trimethylene carbonate (TMC, 1,3-dioxanone-2), Polymer, 41:7311-7320. DOI: 10.1016/S0032-3861(00)00096-3
Kunioka, M., Wang, Y., & Onozawa, Sh. (2003). Polymerization of Poly(ε-caprolactone) using yttrium triflate. Polym. J., 35(5):422-429. DOI: 10.1295/polymj.35.422
Larrañaga, A., & Lizundia, E. (2019). A review on the thermomechanical properties and biodegradation behavior polyesters. Eur. Polym. J. 121:109296. DOI: 10.1016/j.eurpolymj.2019.109296
Lecomte, P., & Jérome, C. (2011). Recent developments in Ring-Opening Polymerization of lactones. Adv. Polym. Sci. 245:173-217. DOI: 10.1007/12_2011_144
Lee, G., Na, J. (2013). Future of microbial polyesters. Microb. Cell Fact, 12(1):54-58. DOI: 10.1186/1475-2859-12-54
Liao, L., Zhang, C., Gong, S. (2007). Rapid synthesis of poly(trimethylene carbonate) by microwave-assisted ring-opening polymerization. Eur. Polym. J., 43:4289–4296. DOI: 10.1016/j.eurpolymj.2007.07.009
Liao, L., Zhang, C., & Gong, S. (2008). Preparation of poly(trimethylenecarbonate)-block-poly(ethylene glycol)-block-poly(trimethylene carbonate) triblockcopolymers under microwave irradiation. React. Funct. Polym. 68: 751-758. DOI: 10.1016/j.reactfunctpolym.2007.11.012
Ling, J., Shen, Z., & Huang, Q.(2001). Novel single rare earth aryloxide initiators for ring-opening polymerization of 2,2-dimethyltrimethylene carbonate. Macromolecules, 34:7613-7616. DOI: 10.1021/ma0107657
Ling, J., Dai, Y., Zhu, Y., Sun, W., & Shen, Z. (2010). Ring-opening polymerization of 1-methyltrimethylene carbonate by rare earth initiators. J. Polym. Sci. Part A: Polym. Chem. 48:3807-3815. DOI: 10.1002/pola.24166
Mahha, Y., Atlamsani, A., Blais, J., Tessier, M., Brégeault, J., & Salles, L. (2005). Oligomerization of ε-caprolactone and δ-valerolactone using heteropolyacid initiators and vanadium or molybdenum complexes. J. Mol. Catal. A-Chem. 234(1-2):63-73. DOI: 10.1016/j.molcata.2005.02.023
Manavitehrani, I., Fhati, A., Badr, H., Daly, S., Shirazi, A., & Dehghani, F. (2016). Biomedical applications of biodegradable polyesters. Polymers, 8:20 DOI: 10.3390/polym8010020
Martina, M., & Hutmacher, D. (2007). Biodegradable polymers applied in tissue engineering research: a review. Polym. Int. 56(2):145-157. DOI: 10.1002/pi.2108
Matsuo, J., Sanda, F., & Endo, T. (1997). Anionic ring-opening polymerization behavior of a seven-membered cyclic carbonate; 1, 3-dioxepan-2-one. J. Polym. Sci., Part A: Polym. Chem. 35:1375-1380. DOI: 10.1002/(SICI)1099-0518(199706)35:8<1375::AID-POLA5>3.0.CO;2-Z
McIntyre, J. E. (2003). The Historical Development of Polyesters. In J. Scheirs y T. E. Long (Ed.), Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters, John Wiley & Sons Ltd., Inglaterra. pag. 3-24. DOI: 10.1002/0470090685.ch1
Medina, D., Contreras, J., López-Carrasquero, F., Cardozo E., & Contreras, R. (2017). Use of samarium(III)–amino acid complexes as initiators of ring-opening polymerization of cyclic esters. Polym. Bull. DOI 10.1007/s00289-017-2089-9
Meng, D., Shen, R., Yao, H., Chen, J., Wu, Q., & Chen, G. (2014). Engineering the diversity of polyesters. Current opinion in biotechnology, 29:245-33. DOI: 10.1016/j.copbio.2014.02.013
Middleton, J., & Tipton, A. (2000). Synthetic biodegradables polymers as orthopedic devices. Biomaterials, 21(23):2335-2346. DOI: 10.1016/S0142-9612(00)00101-0
Nair, L., Laurencin, C. (2007). Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32:762-798. DOI: 10.1016/j.progpolymsci.2007.05.017.
Okada, M. (2002). Chemical syntheses of biodegradable polymers. Prog. Polym. Sci. 27(1):87-133. DOI: 10.1016/S0079-6700(01)00039-9
Saltzman, W.M. (2001). Drug Delivery: Engineering principles for drug therapy; Oxford University Press, New York, USA.
Seyednejard, H., Ghaseeemi, A., Van Nostrum, C., Vermenden, T & Hennink, W. (2011). Functional aliphatic polyesters for biomedical applications. J. Control. Release. 52(1):168-176. DOI: 10.1016/j.conrel.2010.12.016
.Shibasaki, Y., Sanda, F., & Endo, T. (2000). Cationic ring-opening polymerization of seven-membered cyclic carbonate with water−hydrogen chloride through activated monomer process, Macromolecules 33:3590-3593.. DOI: 10.1021/ma9917444
Shin, I., Jung, M., Kim, K., Seol, Y., Park, Y., Park, W., & Lee, S. (2010). Novel three-dimensional scaffolds of poly(L-lactic acid) microfibers using electrospinning and mechanical expansion: Fabrication and bone regeneration. J. Biomed. Mater. R. B. 95B(1):150-160. DOI: 10.1002/jbm.b.31695
Srichana, T., & Domb., A. (2009). Polymeric Biomaterials. In R. Narayan (Ed.), Biomedical materials, Springer, USA. pag. 83-118.
Sudesh, K., & Doi, Y. (2005). Polyhydroxyalkanoates. In C. Bastioli (Ed.), Handbook of Biodegradable Polymers, Rapra Technology Limited, Kingdom United. pag. 219-227.
Takata T., Igarashi M., & Endo T. (1991). Alkyl halide-initiated cationic polymerization of cyclic carbonate. J. Polym. Sci., Part A: Polym. Chem. 29:781-784. DOI: 10.1002/pola.1993.080310232
Tathe, A., Ghodke, M., & Nikalje, A. (2010). A brief review: biomaterials and their application. Int. J. Pharm. Pharm. Sci. 2(4):19-23.
Tokiwa, Y., & Calabia, B. (2006). Biodegradability and biodegradation of poly(lactide). Appl. Microbiol. Biot. 72(2):244-251. DOI: 10.1007/s00253-006-0488-1
Tong, R. (2017). New chemistry in functional polyesters. Ind. Eng. Chem. Res., 56(1):4207-4219. DOI: 10.1021/acs.iecr.7b00524
Torres, A., Li, S., Roussos, S., & Vert, M. (1996). Degradation of L and DL-lactic acid oligomers in the presence of Fusarium moniliforme and Pseudomonas putida. J. Environ. Polym. Degr. 4(4):213-223. DOI: 10.1007/BF02070690
Vila, A., Sánchez, A., Évora, C., Soríano, I., McCallion, O., & Alonso, M. (2005). PLA-PEG particles as nasal protein carriers: The influence of the particle size. Int. J. Pharm. 292(1-2):43-52. DOI: 10.1016/j.ijpharm.2004.09.002
Vileta, C., Sousa, A., Fonseca, A., Serra, A., Coelho, J., Freire, C., Silvestre, A. 2014. The quest for ustainable polyesters-insights into the future. Polym. Chem., 5, 3119-3141. DOI: 10.1039/c3py01213a
Vivas, M., & Contreras, J. (2003). Ring-opening polymerization of ε-caprolactone initiated by diphenylzinc. Eur. Polym. J. 39(1):43-47. DOI: 10.1016/S0014-3057(02)00190-8
Vivas, M., Mejías, N., & Contreras, J. (2003) Ring-opening polymerization of lactones initiated by diphenylzinc-coinitiator systems. Polym. Int. 52(6):1005-1009. DOI: 10.1002/pi.1183
Woodruff, M., & Hutmacher, D. (2010). The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog. Polym. Sci. 35(10):1217-1256. DOI: 10.1016/j.progpolymsci.2010.04.002
Wu, J., Yu, T., Chen, Ch., & Lin, Ch. (2006). Recent developments in main group metal complexes catalyzed/initiated polymerization of lactides and related cyclic. Coordination Chemistry Reviews, 250(5-6):602–626. DOI: 10.1016/j.ccr.2005.07.010
Xiao, L., Wang, B., Yang, G., & Gauthier, M. (2012). Poly(Lactic Acid)-Based Biomaterials: Synthesis, Modification and Applications, Biomedical Science, Engineering and Technology, Dhanjoo N. Ghista (Ed.). 247-282. DOI: 10.5772/23927
Xie, W., Chen, D., Fan, X., Li, J., Wang, P., Cheng, H., & Nickol, R. (1999). Lithium chloride as catalyst for the ring-opening polymerization of lactide in the presence of hydroxyl-containing compounds. J. Polym. Sci. Part A: Polym. Chem. 37(17):3486–3491. DOI: 10.1002/(SICI)1099-0518(19990901)37:17<3486::AID-POLA6>3.0.CO;2-2
Yu, F., & Zhuo, R. (2004). Synthesis and characterization of OH-terminated poly(trimethylenecarbonate)s by alcohol-initiated ring-opening polymerization in melt bulk without using any catalyst. Polym. J. 36:28-33. DOI: 35400011165173.0050
Zhang, Y., & Zhuo, R. (2005). Synthesis and drug release behavior of poly (trimethylene carbonate)–poly (ethylene glycol)–poly (trimethylene carbonate) nanoparticles, Biomaterials, 26: 2089-2094. DOI: 10.1016/j.biomaterials.2004.06.004.
Zhang, Z., Kuijer, R., Bulstra, K., Grijpma, D., & Feijen, J. (2006). The in vivo and in vitro degradation behavior of poly(trimethylene carbonate). Biomaterials, 27:1741-1748. DOI: 10.1016/j.biomaterials.2005.09.017

Publicado

2021-08-30

Número

Sección

Ciencias Químicas