Implementación y evaluación del aula invertida en la cátedra de Programación Básica
Palabras clave:
Aula Invertida, Pensamiento Lógico, Programación BásicaResumen
Los fundamentos de programación constituyen una asignatura transversal en carreras de ingenierías de sistemas y afines a nivel mundial; ya que es la base que los estudiantes necesitan para el desarrollo del pensamiento lógico. La complejidad del desarrollo del pensamiento lógico, así como el bajo nivel pre-universitario, generan desmotivación de los estudiantes hacia esta asignatura, que provoca el abandono de sus carreras en fases tempranas. Este escenario es ratificado por múltiples estudios, que concuerdan en la problemática, así como al interior de la Facultad de Ciencias Informáticas (FCI) de la Universidad Técnica de Manabí. Esta problemática, evidencia la necesidad de desarrollar soluciones desde el cuerpo docente. Consecuentemente, este estudio analiza la incidencia de la aplicación de la estrategia de aula invertida en el proceso de enseñanza aprendizaje de la cátedra de Programación Básica. Este documento presenta un experimento piloto utilizando la estrategia de aula invertida que se impartió en cinco escenarios de programación básica a 125 estudiantes de primer año de ingenierías. Se empleó la plataforma e-Virtual FCI (Facultad de Ciencias Informáticas) para visualizar el contenido digital de la materia. En los resultados se presenta información sobre la experiencia de los estudiantes sobre las actividades del aula invertidas, el análisis de las calificaciones de los estudiantes y la percepción del docente al inicio y final del estudio. Luego de la aplicación de la estrategia de clase invertida, se observó una mejora en el rendimiento de los estudiantes.
PALABRAS CLAVE: Aula Invertida; Pensamiento Lógico; Programación Básica.
Implementation and evaluation of the flipped classroom in the Basic Programming chair
ABSTRACT
Programming foundations is a cross-sectional subject in systems engineering and related careers worldwide; since it is the base that students need for the development of logical thinking. The complexity of the development of logical thinking, as well as the low pre-university level, generate demotivation on the students towards this subject, which causes the abandonment of their careers in early stages. This scenario is ratified by multiple studies, which agree on the problem, as well as within the Faculty of Computer Sciences (FCI) of the Universidad Técnica de Manabí. This issue evidences the need to develop solutions by the teaching staff. Consequently, this study analyzes the incidence of the application of the flipped classroom strategy in the teaching and learning process of Basic Programming. This document presents an experiment applied in five basic programming scenarios, to 125 first year engineering students, using the flipped classroom strategy. The e-Virtual FCI platform was used to visualize the digital content of the subject. The results present information on the students' experiences about the inverted classroom activities, the analysis of the students' grades and the teacher's perceptions at the beginning and end of the study. After the application of the Flipped classroom strategy, an improvement in student performance was observed.
KEYWORDS: Flipped Classroom; Logical Thinking; Basic Programming.
Descargas
Citas
Armijo Vásquez, I. G., & Gonzalo, I. (2018). Enseñanza de sistemas de ecuaciones lineales con dos incógnitas utilizando el método de aula invertida en el décimo año de la unidad educativa replica “Nicolás Infante Díaz” del cantón Quevedo. http://repositorio.unae.edu.ec/handle/56000/822
Aznar, I., Prada, D. A., Acevedo, A., Durán-Flórez, F., & Gómez, J. (2019). Measurement of the performance of the inverted classroom methodology in the finance learning environment: A comparison with the traditional class. Journal of Physics: Conference Series, 1161, 012022. https://doi.org/10.1088/1742-6596/1161/1/012022
Baltasar-Sánchez, A. (2019). «Aula invertida» propuesta de intervención educativa para el módulo de Fisiopatología en Formación Profesional Ciclo Formativo de Grado Superior. https://reunir.unir.net/handle/123456789/9435
Blair, E., Maharaj, C., & Primus, S. (2016). Performance and perception in the flipped classroom. Education and Information Technologies, 21(6), 1465-1482. https://doi.org/10.1007/s10639-015-9393-5
Brame, C. J. (2013, enero 31). Flipping the Classroom. Vanderbilt University. https://cft.vanderbilt.edu/guides-sub-pages/flipping-the-classroom/
Carrier, M., Damerow, R. M., & Bailey, K. M. (2017). Digital Language Learning and Teaching: Research, Theory, and Practice. Taylor & Francis.
Caspersen, M. E., & Bennedsen, J. (2007). Instructional design of a programming course: A learning theoretic approach. Proceedings of the third international workshop on Computing education research, 111–122. https://doi.org/10.1145/1288580.1288595
Cornide-Reyes, H. C., Villarroel, R. H., Cornide-Reyes, H. C., & Villarroel, R. H. (2019). Método para Promover el Aprendizaje Colaborativo en Ingeniería de Software. Formación universitaria, 12(4), 3-12. https://doi.org/10.4067/S0718-50062019000400003
Deslauriers, L., Schelew, E., & Wieman, C. (2011). Improved Learning in a Large-Enrollment Physics Class. Science, 332(6031), 862-864. https://doi.org/10.1126/science.1201783
Gomes, A. (2007). Learning to program—Difficulties and solutions. undefined. /paper/Learning-to-program-difficulties-and-solutions-Gomes/7b36be99e7f1af87a5188b4518dfcf910a7ccc00
Griffiths, L., Villarroel, R., & Ibacache, D. (2016). IMPLEMENTACIÓN DEL MODELO DE AULA INVERTIDA PARA EL APRENDIZAJE ACTIVO DE LA PROGRAMACIÓN EN INGENIERÍA. 10.
Grover, S., Jackiw, N., & Lundh, P. (2019). Concepts before coding: Non-programming interactives to advance learning of introductory programming concepts in middle school. Computer Science Education, 29(2-3), 106-135. https://doi.org/10.1080/08993408.2019.1568955
Hayashi, Y., Fukamachi, K.-I., & Komatsugawa, H. (2015). Collaborative Learning in Computer Programming Courses That Adopted the Flipped Classroom. 2015 International Conference on Learning and Teaching in Computing and Engineering, 209-212. https://doi.org/10.1109/LaTiCE.2015.43
Indi, T. S. (2016). An Experience Report of Flipped Classroom Strategy Implementation for Java Programming Course. 2016 IEEE Eighth International Conference on Technology for Education (T4E), 240-241. https://doi.org/10.1109/T4E.2016.059
Johnson, L. W., & Renner, J. D. (2012). EFFECT OF THE FLIPPED CLASSROOM MODEL ON A SECONDARY COMPUTER APPLICATIONS COURSE: STUDENT AND TEACHER PERCEPTIONS, QUESTIONS AND STUDENT ACHIEVEMENT. 104.
Krpan, D., Mladenović, S., & Rosić, M. (2015). Undergraduate Programming Courses, Students’ Perception and Success. Procedia - Social and Behavioral Sciences, 174, 3868-3872. https://doi.org/10.1016/j.sbspro.2015.01.1126
Lage, M. J., Platt, G. J., & Treglia, M. (2000). Inverting the Classroom: A Gateway to Creating an Inclusive Learning Environment. The Journal of Economic Education, 31(1), 30-43. https://doi.org/10.1080/00220480009596759
Lahtinen, E., Ala-Mutka, K., & Järvinen, H.-M. (2005). A study of the difficulties of novice programmers. Proceedings of the 10th annual SIGCSE conference on Innovation and technology in computer science education, 14–18. https://doi.org/10.1145/1067445.1067453
Law, K. M. Y., Lee, V. C. S., & Yu, Y. T. (2010). Learning motivation in e-learning facilitated computer programming courses. Computers & Education, 55(1), 218-228. https://doi.org/10.1016/j.compedu.2010.01.007
le Roux, I., & Nagel, L. (2018). Seeking the best blend for deep learning in a flipped classroom – viewing student perceptions through the Community of Inquiry lens. International Journal of Educational Technology in Higher Education, 15(1), 16. https://doi.org/10.1186/s41239-018-0098-x
Lundin, M., Bergviken Rensfeldt, A., Hillman, T., Lantz-Andersson, A., & Peterson, L. (2018). Higher education dominance and siloed knowledge: A systematic review of flipped classroom research. International Journal of Educational Technology in Higher Education, 15(1), 20. https://doi.org/10.1186/s41239-018-0101-6
Mendes, A. J., Paquete, L., Cardoso, A., & Gomes, A. (2012). Increasing student commitment in introductory programming learning. 2012 Frontiers in Education Conference Proceedings, 1-6. https://doi.org/10.1109/FIE.2012.6462486
Merla González, A. E., & Yáñez Encizo, C. G. (2016). El aula invertida como estrategia para la mejora del rendimiento académico. Revista Mexicana de Bachillerato a Distancia, 8(16), 68-78-78. http://dx.doi.org/10.22201/cuaed.20074751e.2016.16.57108
Mora Ramírez, B. F. M., & Hernández Suárez, C. A. H. (2017). Las aulas invertidas: Una estrategia para enseñar y otra forma de aprender física. INVENTUM, 12(22), 42-51. https://doi.org/10.26620/uniminuto.inventum.12.22.2017.42-51
Moravec, M., Williams, A., Aguilar-Roca, N., & O’Dowd, D. K. (2010). Learn before Lecture: A Strategy That Improves Learning Outcomes in a Large Introductory Biology Class. CBE—Life Sciences Education, 9(4), 473-481. https://doi.org/10.1187/cbe.10-04-0063
Mozelius, P., & Hettiarachchi, E. (2017). Critical Factors for Implementing Blended Learning in Higher Education. International Journal of Information and Communication Technologies in Education, 6(2), 37-51. https://doi.org/10.1515/ijicte-2017-0010
Nguyen, N., & Williams, P. J. (2016). An ICT supported sociocultural approach to improve the teaching of physics. Asia-Pacific Science Education, 2(1), 1-21. https://doi.org/10.1186/s41029-016-0008-2
Ramírez, E. R., Cordero, J. N., Posada, R. C., & Posada, G. E. C. (2018). Enseñanza de la programación: La importancia de promover actitudes autodidactas en los estudiantes. Atenas, 4(44), 46-59.
Rosiene, C. P., & Rosiene, J. A. (2015). Flipping a programming course: The good, the bad, and the ugly. 2015 IEEE Frontiers in Education Conference (FIE), 1-3. https://doi.org/10.1109/FIE.2015.7344151
Talbert, R. (2014). Inverting the Linear Algebra Classroom. PRIMUS, 24(5), 361-374. https://doi.org/10.1080/10511970.2014.883457
Toto, R., & Hien Nguyen. (2009). Flipping the Work Design in an industrial engineering course. 2009 39th IEEE Frontiers in Education Conference, 1-4. https://doi.org/10.1109/FIE.2009.5350529
Warter-Perez, N., & Dong, J. (2012). Flipping the Classroom: How to Embed Inquiry and Design Projects into a Digital Engineering Lecture. 17.
Xie, B., Loksa, D., Nelson, G. L., Davidson, M. J., Dong, D., Kwik, H., Tan, A. H., Hwa, L., Li, M., & Ko, A. J. (2019). A theory of instruction for introductory programming skills. Computer Science Education, 29(2-3), 205-253. https://doi.org/10.1080/08993408.2019.1565235
Zappe, S., Leicht, R., Messner, J., Litzinger, T., & Lee, H. W. (2009, enero 1). «flipping» the classroom to explore active learning in a large undergraduate course. ASEE Annual Conference and Exposition, Conference Proceedings. 2009 ASEE Annual Conference and Exposition. https://pennstate.pure.elsevier.com/en/publications/flipping-the-classroom-to-explore-active-learning-in-a-large-unde-2
Zhao, D., Xu, Q., & Zuo, W. (2009). The Research and Practice of Computer Teaching at Independent Colleges for Students at Different Levels. 2009 WASE International Conference on Information Engineering. https://doi.org/10.1109/ICIE.2009.231
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Elba Tatiana Zambrano-Solórzano, Lorena Elizabeth Bowen-Mendoza, Monica Elva Vaca-Cárdenas, Fabricio Javier Santana-Campoverde, Jaime Alcides Meza-Hormaza

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.