Asociaciones entre alimentos, flora intestinal y sistema nervioso central

Associations between food, intestinal flora and central nervous system

  • Angel Eladio Caballero Torres Universidad Técnica de Manabí
  • Yumy Estela Fernández Vélez Universidad Técnica de Manabí

Resumen

 
Existe un incremento del interés sobre posibles efectos de la alimentación en el funcionamiento del sistema nervioso central, aunque la importancia de esa influencia parece requerir mayores respaldos científicos. Estos señalamientos son motivos para   valorar, sobre la base de los aportes de otros autores, el posible significado de la relación de alimentos, flora intestinal y sistema nervioso. Para cumplir este objetivo fue necesario una búsqueda de informaciones científicas en la US National Library of Medicine sobre este tema, una selección de publicaciones relevantes y análisis de los datos encontrados. Según esas publicaciones, la protección de la inocuidad de los alimentos, probióticos y algunas sustancias químicas de la dieta tienen relación con la composición y funcionamiento de la flora intestinal que puede afectar el eje intestino cerebro y causar alteraciones en el funcionamiento del sistema nervioso central. Se acepta que son insuficientes las explicaciones sobre relaciones específicas entre componentes de la dieta y efectos en el sistema nervioso central de los consumidores de alimentos, incluyendo los posibles mecanismos de esas relaciones.
 
Palabras clave: alimentos, eje intestino cerebro, sistema nervioso central, microbiota intestinal.
 
Abstract
 
There is an increased interest in possible effects of food on the central nervous system functioning, although the importance of this influence seems to require more scientific support. These indications are reasons to value, based on the contributions of other authors, the possible meaning of the relationship of food with the intestinal flora and the nervous system. To accomplish this goal, a search of scientific information was necessary for the US National Library of Medicine on this topic, a selection of relevant publications and analysis of the data found. According to those publications, food safety, probiotics and some dietary chemicals has a relationship with to the composition and functioning of the intestinal microbiome that can affect the brain intestinal axis and cause alterations in the functioning of the central nervous system. It’s accepted that explanations about specific relationships between diet components and effects on the central nervous system of food consumers, including the possible mechanisms of these relationships, are insufficient.
 
Key words: food, intestine brain axis, central nervous system, nutrition, intestinal microbiota.

Citas

1. Lawrence D et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014; 505(7484): 559–563.
2. Stecher B. The roles of inflammation, nutrient availability and the commensal microbiota in enteric pathogen infection. Microbiol Spectr. 2015; 3(3): 1 – 17.
3. Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Annals of Gastroenterology. 2015; 28: 203-209
4. Moloney RD et al. Stress and the Microbiota–Gut–Brain Axis in Visceral Pain: Relevance to Irritable Bowel Syndrome. CNS Neuroscience & Therapeutics. 2016; 22: 102–117
5. Latalova K, Hajda M, Prasko J. Can gut microbes play a role in mental disorders and their treatment? Psychiatria Danubina. 2017; 29(1): 28-30
6. Sonnenburg ED, Smits SA, Tikhonov M, et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature. 2016; 529:212–5.
7. Ley R, Backbed F, Turnbaugh P, Lozupone C, Knight R, Gordon J. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci 2005; 102(31): 11070 - 11075
8. Poroyko V, Morowitz M, Bell T, Ulanov A, Wang M, Donovan S, Bao N, Gu S, Hong L,
Rea K Dinan TG, Cryan JF. The microbiome: A key regulator of stress and neuroinflmmation. Neurobiol Stress. 2016; 4:23-33.
9. Selhub EM, Logan AC, Bested AC. Fermented foods, microbiota, and mental health: Ancient practice meets nutritional psychiatry. J Physiol Anthropol. 2014; 33:2.
10. Rosas-Villegas A et al. Differential effect of sucrose and fructose in combination with a high fat diet on intestinal microbiota and kidney oxidative stress. Nutrients 2017; 9: 393.
11. Collins S, Reid G. Distant site effects of ingested prebiotics. Nutrients. 2016; 26;8(9). pii: E523.
12. Koropatkin N, Cameron E, Martens E. How glycan metabolism shapes the human gut microbiota. Nat. Rev. 2012; 10:323–335.
13. Sonnenburg ED, Sonnenburg L. Starving our Microbial Self: The Deleterious Consequences of a Diet Deficient in Microbiota-Accessible Carbohydrates. Cell Metab. 2014; 20(5): 779–786. doi:10.1016/j.cmet.2014.07.003
14. Tarr A et al. The prebiotics 3′Sialyllactose and 6′Sialyllactose diminish stressor-induced anxiety-like behavior and colonic microbiota alterations: evidence for effects on the gut-brain axis. Brain Behav Immun. 2015; 50: 166–177.
15. Sawin EA et al. Glycomacropeptide is a prebiotic that reduces Desulfovibrio bacteria, increases cecal short-chain fatty acids, and is anti-inflammatory in mice. Am J Physiol Gastrointest Liver Physiol. 2015; 309(7): G590–G601.
16. Dinan TG, Stanton C, Cryan JF. Psychobiotics: a novel class of psychotropic. Biol Psychiatry 2013; 74:720–726
17. Kastin AJ, Pan W. Concepts for biologically active peptides. Curr Pharm Des 2010; 16: 3390-3400
18. Barrett E, Ross RP, O'Toole PW, Fitzgerald GF, Stanton C. Gamma aminobutiric acid production by culturable bacteria from the human intestine. J Appl. Microbiol. 2012: 113(2): 411 – 7.
19. Lim HS, Cha IT, Roh SW, Shin HH, Seo MJ. Enhanced production of gamma-aminobutyric acid by optimizing culture conditions of lactobacillus brevis hye1 isolated from kimchi, a korean fermented food. J Microbiol Biotechnol. 2017 Mar 28;27(3):450-459
20. Payros D et al. The Food Contaminant Deoxynivalenol Exacerbates the Genotoxicity of Gut Microbiota. MBio. 2017 Mar 14;8(2). pii: e00007-17. doi: 10.1128/mBio.00007-17
21. Sandhu KV, Sherwin E, Schellekens H, Stanton C, Dinan TG, Cryan JF. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Transl Res. 2017; 179:223-244.
22. Harmsen HJ, de Goffau MC. The Human Gut Microbiota. Adv Exp Med Biol. 2016; 902:95-108.
23. Lowry CA et al. The Microbiota, Immunoregulation, and Mental Health: Implications for Public Health. Curr Envir Health Rpt 2016; 3:270–286
24. FAO. Probióticos en los alimentos. Serie: Estudio FAO alimentación y nutrición 85, Roma, 2006.
25. Reigstad CS, et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 2015; 29(4): 1395–1403.
26. Lyte M. Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior. PLOS Pathogens 2013; 9(11): 1-3
27. Landman C, Quévrain E. Gut microbiota: Description, role and pathophysiologic implications. Rev Med Interne. 2016; 37(6):418-23.
28. Sherman MP, Zaghouani H, Niklas V. Gut microbiota, the immune system, and diet influence the neonatal gut-brain axis. Pediatr Res. 2015; 77(1-2):127-35.
29. Chan YK et al. Clinical consequences of diet-induced dysbiosis. Ann Nutr Metab 2013; 63(suppl 2):28–40.
30. Magalhaes J, Taltoli I, Girardin SE. The intestinal epithelial barrier: How to distinguish between the microbial flora and pathogens. Seminars in Immunology, 2007: 19(2): 106-115.
31. Menchen L. Bases celulares y moleculares de la disfunción de la barrera intestinal inducida por estrés experimental. Gast roenterol Hepatol. 2009; 32(Supl 2):55-61
32. Brzozowski B, Mazur-Bialy A, Pajdo R, Kwiecien S, Bilski J, Zwolinska-Wcislo M, Mach T, Brzozowski T Mechanisms by which stress affects the experimental and clinical inflammatory bowel disease (ibd): role of brain-gut axis. Curr Neuropharmacol. 2016; 14(8):892-900.
33. Saulnier DM et al. The intestinal microbiome, probiotics and prebiotics in neurogastroenterology. Gut Microbes 2013: 4:1, 17–27
34. Mangiola F et al. Gut microbiota in autism and mood disorders. World J Gastroenterol 2016; 22(1): 361-368
35. Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci. 2017; 20(2):145-155
36. Fond G et al. The “psychomicrobiotic”: Targeting microbiota in major psychiatric disorders: A systematic review. Pathol Biol (Paris) 2015; 63: 35-42
37. Norris V, Molina F, Gewirtz AT (2013) Hypothesis: bacteria control host appetites. J Bacteriol 195: 411–416.
38. Rea K Dinan TG, Cryan JF. The microbiome: A key regulator of stress and neuroinflmmation. Neurobiol Stress. 2016; 4:23-33.
39. Benton D, Williams C, Brown A. Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur J Clin Nutr. 2007; 61(3):355-61
40. Konturek PC, Brzozowski T, Konturek SJ. Stress and the gut pathophysiology, clinical consequences, diagnostic approach and treatment options. J Physiol Pharmacol. 2011; 62(6): 591-9.
41. Messaoudi M et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr 2011; 105: 755-764
42. Martin FP, Collino S, Rezzi S, Kochhar S. 2012. Metabolomic applications to decipher gut microbial metabolic influence in health and disease. Front. Physiol. 3:113.
43. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012; 13: 701-712
Publicado
2018-04-30
Sección
Artículos