Biofilms of pathogenic bacteria and emerging antibiofilm strategies
DOI:
https://doi.org/10.33936/qkrcs.v6i1.3601Palabras clave:
biofilm, pathogenic bacteria, infection, anti-biofilmResumen
Biofilms act as physical barriers to the immune system and drugs used by the host, resulting in antimicrobial resistance. Biofilms reduce the chances of eradicating infections and can result in relapses and backsliding after conventional treatment. Biofilms have a big impact on food safety in the food industry; many foodborne outbreaks have been linked to pathogenic bacteria that can form a biofilm. Biofilm-associated infections can cause not only severe symptoms but also serious side effects and even death. The findings of an experimental study of pathogenic bacteria like Pseudomonas aeruginosa, Salmonella enteritidis, and Staphylococcus aureus forming biofilms are presented in this article. The process of biofilm formation and its development phases were displayed with preserved architectonics using light and scanning electron microscopes. The amount of biofilm formed was influenced by the growth medium as well as the incubation conditions and time. Biofilm-forming microbes are a common cause of complicated and recurrent diseases, and they're usually linked to MDR bacteria, which account for nearly 80% of all refractory nosocomial infections. Medical device- and tissue-associated biofilm infections are two types of biofilm infections. Understanding the pathogenesis and factors that contribute to biofilm formation, as well as the disruption and dispersal mechanisms of biofilms, will aid in the development of improved anti-biofilm strategies. Overall, this literature review can serve as a single source of information about microbial biofilm formation and mitigation strategies, which could be extremely useful to biofilm researchers.
Descargas
Citas
2. Abebe GM. The Role of Bacterial Biofilm in Antibiotic Resistance and Food Contamination. Int J Microbiol [Internet]. 2020;1-10. Disponible en: https://doi.org/10.1155/2020/1705814
3. Ch’ng JH, Chong KK, Lam LN, Wong JJ, Kline KA. Biofilm-associated infection by Enterococci. Nat. Rev. Microbiol [Internet]. 2019;17:82-94. Disponible en: https://doi.org/10.1038/s41579-018-0107-z
4. Kostakioti M, Hadjifrangiskou M, Hultgren SJ. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the post antibiotic era. Cold Spring Harb Perspect Med [Internet]. 2013; 3(4):a010306. Disponible en: https://doi.org/10.1101/cshperspect.a010306
5. Mishra R, Panda AK, Mandal SD, Shakeel M, Bisht SS, Khan J. Natural Anti-biofilm Agents: Strategies to Control Biofilm-Forming Pathogens. Front. Microbiol [Internet]. 2020;11(1-23). Disponible en: https://doi.org/10.3389/fmicb. 566325
6. Yin WY, Wang L, Liu, He J. Biofilms: the microbial “protective clothing” in extreme environments, Int J Mol Sci [Internet]. 2019;20(14):3423. Disponible en: https://doi.org/10.3390/ijms20143423
7. Cabo ML, Rodríguez-López P, Rodríguez-Herrera JJ, Vázquez-Sánchez D. Current knowledge on Listeria monocytogenes biofilms in food-related environments: incidence, resistance to biocides, ecology and biocontrol, Foods [Internet]. 2018;7(6):85. Disponible en: https://doi.org/10.3390/foods7060085
8. Mosselhy DA, Assad M, Sironen T, Elbahri M. Nanotheranostics: A Possible Solution for Drug-Resistant Staphylococcus aureus and their Biofilms? Nanomaterials [Internet]. 2021;11(1):82. Dis ponible en: https://doi.org/10.3390/nano 11010082
9. Lebeaux D, Ghigo JM, Lucet JC. Physiopathologie et prévention des infections liées aux dispositifs médicaux implantés. Review Practice [Internet]. 2014;64(5):620–625. Disponible en: https://research.pasteur.fr/wp-content/uploads/2015/05/research.pasteur.fr_genetics-of-biofilms5.pdf
10. Ceresa C, Tessarolo F, Maniglio D et al. Medical-grade silicone coated with rhamnolipid R89 is effective against Staphylococcus spp. Biofilms. Molecules [Internet]. 2019;24(21):3843. Disponible en: https://doi.org/10.3390/molecules24213843
11. Otto M. Staphylococcal biofilms. Microbiol. Spectr [Internet]. 2018;6(4). Disponible en: https://doi.org/10.1128/microbiolspec.GPP3-0023-2018
12. Li H, Lee JH. Antibiofilm agents: A new perspective for antimicrobial strategy. J Microbiol [Internet]. 2017;55(10) ):753-766. Disponible en: https://doi.org/10.1007/s12275-017-7274-x
13. Li B, Webster TJ. Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. J Orthop Res [Internet]. 2018;36(1):22-32. Disponible en: https://doi.org/10.1002/jor.23656
14. Olivares E, Badel-Berchoux S, Provot C, Prévost G, Bernardi T, Jehl F. Clinical impact of antibiotics for the treatment of Pseudomonas aeruginosa biofilm infections. Front Microbiol [Internet]. 2020;10:2894. Disponible en: https://doi.org/10.3389/fmicb.2019.02894
15. Sabaté Brescó M, Harris LG, Thompson K, Stanic B, Morgenstern M, O'Mahony L et al. Pathogenic mechanisms and host interactions in staphylococcus epidermidis device-related infection. Front Microbiol [Internet]. 2017;8:1401. Disponible en: https://doi.org/10.3389/fmicb.2017.01401
16. Tsui C, Kong EF, Jabra-Rizk MA. Pathogenesis of Candida albicans biofilm. Pathog Dis [Internet]. 2016;74(4):ftw018. Disponible en: https://doi.org/10.1093/femspd/ftw018
17. Eze EC, Chenia HY, El Zowalaty ME. Acinetobacter baumannii biofilms: effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments. Infect Drug Resist [Internet]. 2018;11:2277–2299. Disponible en: https://doi.org/10.2147/IDR.S169894
18. Yonezawa H, Osaki T, Kamiya S. Biofilm formation by helicobacter pylori and its involvement for antibiotic resistance. Biomed Res Int [Internet]. 2015;2015:914791. Disponible en: https://doi.org/10.1155/2015/914791
19. Moormeier DE, Bayles KW. Staphylococcus aureus biofilm: a complex developmental organism. Mol Microbiol [Internet]. 2017, 104(3):365-376. Disponible en: https://doi.org/10.1111/mmi.13634
20. Barbosa J, Borges S, Camilo R, Magalhães R, Ferreira V, Santos I, et al. Biofilm formation among clinical and food isolates of Listeria monocytogenes. Int J Microbiol [Internet]. 2013;2013:524975. Disponible en: https://doi.org/10.1155/2013/524975
21. Bridges AA, Bassler BL. The intragenus and interspecies quorum-sensing autoinducers exert distinct control over Vibrio cholerae biofilm formation and dispersal. PLoS Biol [Internet]. 2019;17(11):3000429. Disponible en: https://doi.org/10.1371/journal.pbio.3000429
22. Fàbrega A, Soto SM, Ballesté-Delpierre C, Fernández-Orth D, Jiménez de Anta MT, Vila J. Impact of quinolone-resistance acquisition on biofilm production and fitness in Salmonella enterica. J Antimicrob. Chemother [Internet]. 2014;69:1815-1824. Disponible en: https://doi.org/10.1093/jac/dku078
23. Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol [Internet]. 2017;15:740-755. Disponible en: https://doi.org/10.1038/nrmicro.2017.99
24. Cavalheiro M, Teixeira MC. Candida biofilms: threats, challenges, and promising strategies. Front Med (Lausanne) [Internet]. 2018;5:28. Disponible en: https://doi.org/10.3389/fmed.2018.00028
25. Maunders E, Welch M. Matrix exopolysaccharides; the sticky side of biofilm formation, FEMS Microbiology Letters [Internet]. 2017;364(13):120. Disponible en: https://doi.org/10.1093/femsle/fnx120
26. Pavlova IB, Kononenko AB, Tolmacheva GS, Kardash GG, Rytsarev AY. Formation of biofilms of pathogenic bacteria and the effect of a new disinfectant. BIO Web of Conferences 17 [Internet]. 2020;17(00204):5 pp. Disponible en: https://doi.org/10.1051/bioconf/20201700204
27. Pavlova IB, Kononenko AB, Bannikova DA, Tolmacheva GS, Lenchenko EM. Regularities of the development of biofilms of bacteria at different phases of their formation in vitro. Probl Veter Sanitat Hyg Ecol, 2018,4(28):56–62. Disponible en: https://doi.org/10.36871 / vet.san.hyg.ecol.201804009
28. Joanna K, Elżbieta M, Monika S, Katarzyna K, Jacek P. Biofilm-Forming Ability of Pathogenic Bacteria Isolated from Retail Food in Poland. J Food Prot [Internet]. 2020;83(12):2032-2040. Disponible en: https://doi.org/10.4315/JFP-20-135
29. Trampari E, Holden ER, Wickham GJ, et al. Exposure of Salmonella biofilms to antibiotic concentrations rapidly selects resistance with collateral tradeoffs. npj Biofilms Microbiomes [Internet]. 2021;7,3. Disponible en: https://doi.org/10.1038/s41522-020-00178-0
30. Miyaue S. Bacterial memory of persisters: bacterial persister cells can retain their phenotype for days or weeks after withdrawal from colony-biofilm culture. Front Microbiol [Internet]. 2018;9:1396. Disponible en: https://doi.org/10.3389/fmicb.2018.01396
31. Tascini C, Sozio E, Corte L, Sbrana F, Scarparo C, Ripoli A. The role of biofilm forming on mortality in patients with candidemia: a study derived from real world data. Infect. Dis. (Lond). 2018;50: 214-219. Disponible en: https://doi.org/10.1080/23744235.2017.1384956
32. Kumar A, Alam A, Rani M, Ehtesham NZ, Hasnain SE. Biofilms: survival and defense strategy for pathogens. Int J Med Microbiol [Internet]. 2017;307:481-489. Disponible en: https://doi.org/10.1016/j.ijmm.2017.09.016
33. Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence [Internet]. 2018;9:522-554. Disponible en: https://doi.org/10.1080/21505594.2017.1313372
34. Graf AC, Leonard A, Schäuble M, Rieckmann LM, Hoyer J, Maass S. Virulence factors produced by Staphylococcus aureus biofilms have a moonlighting function contributing to biofilm integrity. Mol. Cell Proteomics [Internet]. 2019;18:1036-1053. Disponible en: https://doi.org/10.1074/mcp.RA118.001120
35. Zhang K, Xin L, Chen Y, Yang W. Promising Therapeutic Strategies Against Microbial Biofilm Challenges. Front Cell Infect Microbiol [Internet]. 2020;28. Disponible en: https://doi.org/10.3389/fcimb.2020.00359
36. Kolenbrander PE, Palmer RJ Jr, Periasamy S, Jakubovics NS. Oral multispecies biofilm development and the key role of cell-cell distance. Nat Rev Microbiol [Internet]. 2010;8:471-480. Disponible en: https://doi.org/10.1038/nrmicro2381
37. Madhani HD. Quorum sensing in fungi: Q&A. PLoS Pathog [Internet]. 2011;7:e1002301. Disponible en: https://doi.org/10.1371/journal.ppat.1002301
38. Hong SH, Hegde M, Kim J, Wang X, Jayaraman A, Wood TK. Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device. Nat Commun [Internet]. 2012;3:613. Disponible en: https://doi.org/10.1038/ncomms1616
39. Wuc S, Liuc J, Liuc C, Yang A, Qiao J. Quorum sensing for population-level control of bacteria and potential therapeutic applications. Cell Mol Life Sci [Internet]. 2019;77:1319-1343. Disponible en: Disponible en: https://doi.org/10.1007/s00018-019-03326-8
40. Solano C, Echeverz M, Lasa I. Biofilm dispersion and quorum sensing. Curr Opin Microbiol [Internet]. 2014;18:96-104. Disponible en: https://doi.org/10.1016/j.mib.2014.02.008
41. Yan J, Bassler BL. Surviving as a community: antibiotic tolerance and persistence in bacterial biofilms. Cell Host Microbe [Internet]. 2019;26:15-21. Disponible en: https://doi.org/10.1016/j.chom.2019.06.002
42. Anderl JN, Franklin MJ, Stewart PS. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother [Internet]. 2000;44:1818-1824. Disponible en: https://doi.org/10.1128/AAC.44.7.1818-1824.200
43. Yan J, Moreau A, Khodaparast S, Perazzo A, Feng J, Fei C. Bacterial biofilm material properties enable removal and transfer by capillary peeling. Adv Mater [Internet]. 2018;30:e1804153. Disponible en: https://doi.org/10.1002/adma.201804153
44. Stewart PS. Antimicrobial tolerance in biofilms. Microbiol Spectr [Internet]. 2015;3. Disponible en: https://doi.org/10.1128/microbiolspec.MB-0010-2014
45. Taylor PK, Yeung AT, Hancock RE. Antibiotic resistance in Pseudomonas aeruginosa biofilms: towards the development of novel anti-biofilm therapies. J Biotechnol [Internet]. 2014;191:121-130. Disponible en: https://doi.org/10.1016/j.jbiotec.2014.09.003
46. Kean R, Delaney C, Sherry L, Borman A, Johnson EM, Richardson MD. Transcriptome assembly and profiling of candida auris reveals novel insights into biofilm-mediated resistance. mSphere [Internet]. 2018;3:00334-18. Disponible en: https://doi.org/10.1128/mSphere.00334-18
47. Keren I, Minami S, Rubin E, Lewis K. Characterization and transcriptome analysis of Mycobacterium tuberculosis persisters. MBio [Internet]. 2011;2: e00100–e00111. Disponible en: https://doi.org/10.1128/mBio.00100-11
48. Mah TF. Biofilm-specific antibiotic resistance. Future Microbiol [Internet]. 2012;7:1061-1072. Disponible en: https://doi.org/10.2217/fmb.12.76
49. Petrova OE, Sauer K. Escaping the biofilm in more than one way: desorption, detachment or dispersion. Cur Opin Microbiol [Internet]. 2016;30:67-78. Disponible en: https://doi.org/10.1016/j.mib.2016.01.004
50. Simões M, Pereira AR, Simões LC, Cagide F, Borges F. Biofilm control by ionic liquids. Drug Discov [Internet]. 2021. Disponible en: https://doi.org/ 10.1016/j.drudis.2021.01.031
51. Song P, Xiao Y, Ren ZJ, Brooks JP, Lu L, Zhou B, Zhou Y, Freguia S, Liu Z, Zhang N, Li Y. Electrochemical biofilm control by reconstructing microbial community in agricultural water distribution systems. J Hazar Mater [Internet]. 2021;403:123616. Disponible en: https://doi.org/10.1016/j.jhazmat.2020.123616
52. Shen H, Durkin DP, Aiello A, Diba T, Lafleur J, Zara JM, Shen Y, Shuai D. Photocatalytic graphitic carbon nitride-chitosan composites for pathogenic biofilm control under visible light irradiation. J Hazar Mater [Internet]. 2021;408:124890. Disponible en: https://doi.org/10.1016/j.jhazmat.2020.124890
53. Zafar MS, Ullah R. Phenolic compound-derived natural antimicrobials are less effective in dental biofilm control compared to chlorhexidine. J Evid Based Dent Pract [Internet]. 2021; 21:101576. Disponible en: https://doi.org/10.1016/j.jebdp.2021.101576
54. Sun L, Forauer EC, Brown SRB, D'Amico DJ. Application of bioactive glycolipids to control Listeria monocytogenes biofilms and as post-lethality contaminants in milk and cheese. Food Microbiol [Internet]. 2021;95:103683. Disponible en: https://doi.org/10.1016/j.fm.2020.103683
55. Yu H, Liu Y, Li L, Guo Y, Xie Y, Cheng Y, Yao W. Ultrasound-involved emerging strategies for controlling foodborne microbial biofilms. Trends Food Sci Technol [Internet]. 2020;96:91-101. Disponible en: https://doi.org/10.1016/j.tifs.2019.12.010
56. Quan K, Zhang Z, Ren Y, Busscher HJ, van der Mei HC, Peterson BW. Possibilities and impossibilities of magnetic nanoparticle use in the control of infectious biofilms. J Mater Sci Technol [Internet]. 2021;69:69-78. Disponible en: https://doi.org/10.1016/j.jmst.2020.08.031
57. Maddela NR, Meng F. Discrepant roles of a quorum quenching bacterium (Rhodococcus sp. BH4) in growing dual-species biofilms. Sci. Total Environ [Internet]. 2020;713:136402. Disponible en: https://doi.org/10.1016/j.scitotenv.2019.136402
58. Yu H, Liu Y, Yang F, Xie Y, Guo Y, Cheng Y, Yao W. Synergistic efficacy of high-intensity ultrasound and chlorine dioxide combination for Staphylococcus aureus biofilm control. Food Control [Internet]. 2021;122:107822. Disponible en: https://doi.org/10.1016/j.foodcont.2020.107822
59. Raouf M, Essa S, El Achy S, Essawy M, Rafik S, Baddour M. Evaluation of Combined Ciprofloxacin and azithromycin free and nano formulations to control biofilm producing Pseudomonas aeruginosa isolated from burn wounds. Indian J Med Microbiol [Internet]. 2021;39:81-87. Disponible en: https://doi.org/10.1016/j.ijmmb.2021.01.004
60. Islam MS, Yang X, Euler CW, Han X, Liu J, Hossen MI, Zhou Y, Li J. Application of a novel phage ZPAH7 for controlling multidrug-resistant Aeromonas hydrophila on lettuce and reducing biofilms. Food Control [Internet]. 2021;122:107785. Disponible en: https://doi.org/10.1016/j.foodcont.2020.107785
61. Liu W, Lu H, Chu X, Lou T, Zhang N, Zhang B, Chu W. Tea polyphenols inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances resistance to Klebsiella pneumoniae infection in Caenorhabditis elegans model. Microb Pathog [Internet]. 2020;147:104266. Disponible en: https://doi.org/10.1016/j.micpath.2020.104266
62. Maddela NR, Zhou Z, Yu Z, Zhao S, Meng F. Functional determinants of extracellular polymeric substances in membrane biofouling: experimental evidence from pure-cultured sludge bacteria. Appl. Environ. Microbiol [Internet]. 2018;84. Disponible en: https://doi.org/10.1128/AEM.00756-18
63. Maddela NR, Sheng B, Yuan S, Zhou Z, Villamar-Torres R, Meng F. Roles of quorum sensing in biological wastewater treatment: A critical review. Chemosphere [Internet]. 2019;221:616-629. Disponible en: https://doi.org/10.1016/j.chemosphere.2019.01.064
64. Maddela NR, Cruzatty LCG, Leal-Alvarado DA, Olaya JC, Chakraborty S, Mukherjee A. Quorum Quenching for Sustainable Environment: Biology, Mechanisms, and Applications. In: Arora P. (eds) Microbial Technology for Health and Environment. Microorganisms for Sustainability [Internet]. 2020;22:73-112. Disponible en: https://doi.org/10.1007/978-981-15-2679-4_4
65. Maddela NR, Torres ROV. The presence of low fouling-causing bacteria can lead to decreased membrane fouling potentials of mixed cultures. J. Environ. Chem. Eng [Internet]. 2021;9:105131. Disponible en: https://doi.org/10.1016/j.jece.2021.105131
66. Yadav J, Kumari RM, Verma V, Nimesh S. Recent development in therapeutic strategies targeting Pseudomonas aeruginosa biofilms – A review. Mater. Today Proc [Internet]. 2021. Disponible en: https://doi.org/10.1016/j.matpr.2021.05.245
67. Habash MB, Park AJ, Vis EC, Harris RJ, Khursigara CM. Synergy of silver nanoparticles and aztreonam against Pseudomonas aeruginosa PAO1 biofilms. Antimicrob. Agents Chemother [Internet]. 2014;58:5818. Disponible en: https://doi.org/10.1128/AAC.03170-14
68. Dzianach PA, Dykes GA, Strachan NJC, Forbes KJ, Pérez-Reche FJ. Challenges of biofilm control and utilization: lessons from mathematical modelling. J R Soc Interface [Internet]. 2019;16:20190042. Disponible en: https://doi.org/10.1098/rsif.2019.0042
69. Characklis WG. Bioengineering report: fouling biofilm development: a process analysis. Biotechnol Bioeng [Internet]. 1981;23:1923-1960. Disponible en: https://doi.org/10.1002/bit.260230902
70. Azari M, Le AV, Denecke M. Population dynamic of microbial consortia in a granular activated carbon-assisted biofilm reactor: lessons from modelling. In: Mannina G. (eds) Frontiers in Wastewater Treatment and Modelling. FICWTM 2017. Lecture Notes in Civil Engineering [Internet], 2017;4:588-595. Disponible en: https://doi.org/10.1007/978-3-319-58421-8_92
71. Gupta P, Sarkar S, Das B, Bhattacharjee S, Tribedi P. Biofilm, pathogenesis and prevention—a journey to break the wall: a review. Arch Microbiol [Internet]. 2016;198:1-15. Disponible en: https://doi.org/10.1007/s00203-015-1148-6
72. Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev [Internet]. 2009;73:310. Disponible en: https://doi.org/10.1128/MMBR.00041-08
73. Abraham WR. Going beyond the control of quorum-sensing to combat biofilm infections. Antibiotics [Internet]. 2016;5:3. Disponible en: https://doi.org/10.3390/antibiotics5010003
74. Holden MTG, Ram Chhabra S, De Nys R, Stead P, Bainton NJ, Hill PJ, Manefield M, Kumar N, Labatte M, England D. Quorum‐sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other gram‐negative bacteria. Mol Microbiol [Internet]. 1999;33:1254-1266. Disponible en: https://doi.org/10.1046/j.1365-2958.1999.01577.x
75. Hornby JM, Nickerson KW. Enhanced production of farnesol by Candida albicans treated with four azoles. Antimicrob. Agents Chemother [Internet]. 2004;48:2305. Disponible en: https://doi.org/10.1128/AAC.48.6.2305-2307.2004
76. Navarathna DH, Das A, Morschhäuser J, Nickerson KW, Roberts DD. Dur3 is the major urea transporter in Candida albicans and is co-regulated with the urea amidolyase Dur 1, 2. Microbiology (Reading, England) [Internet]. 2011;157:270. Disponible en: https://doi.org/10.1099/mic.0.045005-0
77. Langford ML, Hasim S, Nickerson KW, Atkin AL. Activity and toxicity of farnesol towards Candida albicans are dependent on growth conditions. Antimicrob. Agents Chemother [Internet]. 2010;54:940. Disponible en: https://doi.org/10.1128/AAC.01214-09
Publicado
Número
Sección
Licencia
Derechos de autor 2022 Naga Raju Maddela, Aransiola S.A., Victor-Ekwebelem M. O., Edward M.O

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.