Factores limitantes en la producción del biodiésel de Jatropha curcas L.

  • Ana V Universidad Técnica de Manabí - Ecuador
  • Segundo García Universidad Técnica de Manabí - Ecuador
  • Gabriel Burgos Universidad Técnica de Manabí - Ecuador
  • Carlos Moreira Universidad Técnica de Manabí - Ecuador
  • Oswaldo García Universidad Técnica de Manabí - Ecuador
  • Carlos Banchón Universidad Agraria del Ecuador - Guayaquil


in order to reduce production costs of biodiesel, minimum transesterification conditions were herein evaluated. Limiting factors were determined to use calcium oxide and hydroxide catalysts, at different doses and concentrations in the transesterification of Jatropha curcas L. oil and methanol. It was determined that the presence of water, and content of free fatty acids (0,423-2,53% acidity) in the Jatropha oil are just a minimum inhibition factors, in comparison with atmospheric reaction conditions. In contrast, the 10:1 molar ratio of methanol and oil allowed a 98,9% yield of biodiesel when sodium hydroxide was used as catalyst. The same yield was obtained with or without oil esterification. In perspective, avoiding the poisoning of heterogeneous catalysts is still under study in the search for catalysts recovery from the reaction medium.
Index Terms—transesterification, nucleophilic reaction, oil, energy, biofuel.


[1] Agarwal, A. K. (2017). Potential and challenges for large-scale application of biodiesel in automotive sector. Progress in Energy and Combustion Science, 37.
[2] Berchmans, H. J., & Hirata, S. (2008). Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresource Technology, 6.
[3] Bhattacharya, M. (2016). The effect of renewable energy consumption on economic growth: Evidence from top 38 countries. Applied Energy, 9.
[4] Bilgili, F. (2016). The dynamic impact of renewable energy consumption on CO2 emissions_ A revisited Environmental Kuznets Curve approach. Renewable and Sustainable Energy Reviews, 8.
[5] Chavan, S. B., Kumbhar, R. R., Madhu, D., Singh, B., & Sharma, Y. C. (2015). Synthesis of biodiesel from Jatropha curcas oil using waste eggshell and study of its fuel properties. RSC Advances, 5(78), 63596-63604. https://doi.org/10.1039/C5RA06937H
[6] Chhetri, A. B., Watts, K. C., & Islam, M. R. (2008). Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production. 16.
[7] De Angelis, G., Medeghini, L., Conte, A. M., & Mignardi, S. (2017). Recycling of eggshell waste into low-cost adsorbent for Ni removal from wastewater. Journal of Cleaner Production, 164, 1497-1506.
[8] Demirbas, A. (2008). Biodiesel: A realistic fuel alternative for diesel engines. London: Springer.
[9] Fukuda, H., Kondo, A., & Noda, H. (2001). Biodiesel fuel production by transesterification of oils. Journal of bioscience and bioengineering, 92(5), 405-416.
[10] García-Muentes, S., Lafargue-Pérez, F., Labrada-Vázquez, B., Díaz-Velázquez, M., & Sánchez del Campo-Lafita, A. (2018). Propiedades fisicoquímicas del aceite y biodiesel producidos de la Jatropha curcas L. en la provincia de Manabí, Ecuador. Rev Cub Quim vol. 30 no.1 Santiago de Cuba.
[11] Gerpen, J. V. (2005). Biodiesel processing and production. Fuel Processing Technology, 11.
[12] Gori, F., Ludovisi, D., & Cerritelli, P. (2007). Forecast of oil price and consumption in the short term under three scenarios: parabolic, linear and chaotic behaviour. Energy, 32(7), 1291-1296.
[13] Granados, M. L., Poves, M. D. Z., Alonso, D. M., Mariscal, R., Galisteo, F. C., Moreno-Tost, R. Fierro, J. L. G. (2007). Biodiesel from sunflower oil by using activated calcium oxide. Applied Catalysis B: Environmental, 73(3-4), 317-326. https://doi.org/10.1016/j.apcatb.2006.12.017
[14] Harvey, L. D. (2016). Global warming. Routledge.
[15] Hirsch, R. L., Bezdek, R. M., & Wendling, R. M. (2005). Peaking of world oil production: impacts, mitigation, & risk management. National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV ….
[16] Hosseinzadeh-Bandbafha, H. (2018). A comprehensive review on the environmental impacts of diesel/biodiesel additives. Energy Conversion and Management, 36.
[17] Huerga, I. R. (2014). Biodiesel production from Jatropha curcas: Integrated process optimization. Energy Conversion and Management, 9.
[18] Juan, J. C. (2011). Biodiesel production from jatropha oil by catalytic and non-catalytic approaches: An overview. Bioresource Technology, 9.
[19] Kamel, D. A. (2018). Smart utilization of jatropha (Jatropha curcas Linnaeus) seeds for biodiesel production_ Optimization and mechanism. 8.
[20] Koh, M. Y. (2011). A review of biodiesel production from Jatropha curcas L. oil. Renewable and Sustainable Energy Reviews, 12.
[21] Kouzu, M., Kasuno, T., Tajika, M., Sugimoto, Y., Yamanaka, S., & Hidaka, J. (2008). Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel, 87(12), 2798-2806.
[22] Kouzu, M., Tsunomori, M., Yamanaka, S., & Hidaka, J. (2010). Solid base catalysis of calcium oxide for a reaction to convert vegetable oil into biodiesel. Advanced Powder Technology, 21(4), 488-494. https://doi.org/10.1016/j.apt.2010.04.007
[23] Kouzu, M., Yamanaka, S., Hidaka, J., & Tsunomori, M. (2009). Heterogeneous catalysis of calcium oxide used for transesterification of soybean oil with refluxing methanol. Applied Catalysis A: General, 355(1-2), 94-99. https://doi.org/10.1016/j.apcata.2008.12.003
[24] Kulkarni, M. G., & Dalai, A. K. (2006). Waste Cooking Oils An Economical Source for Biodiesel: A Review. Ind. Eng. Chem. Res. 45, 2901-2913.
[25] Kumar, A., & Sharma, S. (2008). An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): A review. Industrial Crops and Products, 28(1), 1-10.
[26] Lu, H., Liu, Y., Zhou, H., Yang, Y., Chen, M., & Liang, B. (2009). Production of biodiesel from Jatropha curcas L. oil. Computers & Chemical Engineering, 33(5), 1091-1096.
[27] Ma, F., & Hanna, M. A. (1999). Biodiesel production: a review. Bioresource Technology, 15.
[28] Openshaw, K. (2000). A review of Jatropha curcas: an oil plant of unfulfilled promise p. Biomass and Bioenergy, 15.
[29] Phan, A. N., & Phan, T. M. (2008). Biodiesel production from waste cooking oils. 7.
[30] SASTA. (2015). Method 11.1 – Miscellaneous: available calcium oxide (CaO) in lime. Recuperado de https://sasta.co.za
[31] Serio, M. D., Tesser, R., Pengmei, L., & Santacesaria, E. (2008). Heterogeneous Catalysts for Biodiesel Production. Energy & Fuels, 22, 207–217, 11.
[32] Talebian-Kiakalaieh, A., Amin, N. A. S., & Mazaheri, H. (2013). A review on novel processes of biodiesel production from waste cooking oil. Applied Energy, 29.
[33] Tiwari, A. K., Kumar, A., & Raheman, H. (2007). Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process. Biomass and Bioenergy, 7.
[34] Vicente, G., & Mart, M. (2004). Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresource Technology, 9.
[35] Viriya-empikul, N., Krasae, P., Puttasawat, B., Yoosuk, B., Chollacoop, N., & Faungnawakij, K. (2010). Waste shells of mollusk and egg as biodiesel production catalysts. Bioresource Technology, 3.
[36] Wei, Z., Xu, C., & Li, B. (2009). Application of waste eggshell as low-cost solid catalyst for biodiesel production. Bioresource Technology, 3.
[37] Wright, L. (2006). Worldwide commercial development of bioenergy with a focus on energy crop-based projects. Biomass and Bioenergy, 9.
[38] Yaakob, Z. (2013). Overview of the production of biodiesel from Waste cooking oil. Renewable and Sustainable Energy Reviews, 10.