Aerobiología en hospitales de Guayaquil: microorganismos resistentes a cobre

  • Carlos Banchón Universidad Agraria del Ecuador - Guayaquil
  • Tamara Borodulina Universidad Agraria del Ecuador - Guayaquil
  • Linda Diaz Instituto Nacional de Investigación en Salud Pública (INSPI) - Ecuador
  • Amano Yasuji Instituto Nacional de Investigación en Salud Pública (INSPI) - Ecuador


The present work reports the presence of bacteria and fungi in particulate matter suspended in the exterior of three hospitals in Guayaquil, during the month of March 2019, winter time. The isolated microbial diversity was tolerant to a toxic copper concentration of 3.1 mM. From the particulate material, a greater number of bacterial than fungal species was isolated. However, the fungal species found are related to nosocomial diseases. This is a seed study that aims to lay the foundations for the characterization of microbial diversity through bioprospecting studies, based on aerodynamic factors (wind speed), climatic factors (temperature and relative humidity) and physical composition (content of dust in the air) to correlate the viability of formation of bioaerosols in particulate material in Guayaquil hospitals. Therefore, one of the objectives of the present work is the investigation of the influence of the heavy metal copper in the formulations of culture media to evaluate the microbial tolerance. And due to the potential risk of lack of air control in health institutions, the main objective of the present work is to evaluate the growth conditions of microorganisms present in the suspended particulate material surrounding three hospitals in Guayaquil.
Index Terms—nosocomial, pathogens, airborne, SEM


[1] Alghamdi, M. A., Shamy, M., Redal, M. A., Khoder, M., Awad, A. H., & Elserougy, S. (2014). Microorganisms associated particulate matter: A preliminary study. Science of The Total Environment, 479-480, 109-116.
[2] Atkinson, R. W., Mills, I. C., Walton, H. A., & Anderson, H. R. (2015). Fine particle components and health—a systematic review and meta-analysis of epidemiological time series studies of daily mortality and hospital admissions. Journal of Exposure Science & Environmental Epidemiology, 25(2), 208-214.
[3] Chikere, C. B., Omoni, V. T., & Chikere, B. O. (2008). Distribution of potential nosocomial pathogens in a hospital environment. 5.
[4] Gandolfi, I., Franzetti, A., Bertolini, V., Gaspari, E., & Bestetti, G. (2011). Antibiotic resistance in bacteria associated with coarse atmospheric particulate matter in an urban area: Antibiotic resistance in atmosphere. Journal of Applied Microbiology, 110(6), 1612-1620.
[5] Gao, W. (2016). Characterization of Potential Pathogenic Cladosporium Exposure Risks from Heating, Ventilation and Air Conditioning (HVAC) in Two Cities, China. Medical Mycology, 2(3), 8.
[6] Gilbert, Y., Veillette, M., & Duchaine, C. (2010). Airborne bacteria and antibiotic resistance genes in hospital rooms. 10.
[7] Goldwater, L. J., Manoharan, A., & Jacobs, M. B. (1961). Suspended Particulate Matter: Dust in “Domestic” Atmospheres. Archives of Environmental Health: An International Journal, 2(5), 511-515.
[8] Haas, D., Galler, H., Luxner, J., Zarfel, G., Buzina, W., Friedl, H., Reinthaler, F. F. (2013). The concentrations of culturable microorganisms in relation to particulate matter in urban air. Atmospheric Environment, 65, 215-222.
[9] Hall, M. A. L., Fluit, A. C., Blok, H. E. M., Box, A. T. A., Peters, E. D. J., Weersink, A. J. L., & Verhoef, J. (2001). Control of Nosocomial Multiresistant Enterobacteriaceae Using a Temporary Restrictive Antibiotic Agent Policy. 8.
[10] Hambraeus, A. (1988). Aerobiology in the operating room—a review. Journal of Hospital Infection, 11, 68-76.
[11] Harding, C. M. (2017). Uncovering the mechanisms of Acinetobacter baumannii virulence. 12.
[12] Hay, R. J., Clayton, Y. M., & Goodley, J. M. (1995). Fungal aerobiology: How, when and where? Journal of Hospital Infection, 30, 352-357.
[13] Hurst, C. J., & Crawford, R. L. (Eds.). (2007). Manual of environmental microbiology (3. ed). Washington, DC: ASM Press.
[14] Jaffal, A. (1997). Hospital airborne microbial pollution in a desert country. Environment International, 23(2), 167-172.
[15] Khan, A. A. H., Karuppayil, S. M., Manoharachary, C., Kunwar, I. K., & Waghray, S. (2009). Isolation, identification and testing for allergenicity of fungi from air-conditioned indoor environments. Aerobiologia, 25(2), 119-123.
[16] Lai, K., Emberlin, J., & Colbeck, I. (2009). Outdoor environments and human pathogens in air. Environmental Health, 8(Suppl 1), S15.
[17] Latgé, J.-P. (1999). Aspergillus fumigatus and aspergillosis. Clinical microbiology reviews, 12(2), 310-350.
[18] León, M. G. F.-D. (2016). Diversity and characterization of airborne bacteria at two health institutions. 12.
[19] Li, H., Zhou, X.-Y., Yang, X.-R., Zhu, Y.-G., Hong, Y.-W., & Su, J.-Q. (2019). Spatial and seasonal variation of the airborne microbiome in a rapidly developing city of China. Science of the Total Environment, 8.
[20] Marchisio, V. F., Caramiello, R., & Mariuzza, L. (1989). Outdoor airborne fungi: Sampling strategies. Aerobiologia, 5(2), 145-153.
[21] Prussin, A. J., & Marr, L. C. (2015). Sources of airborne microorganisms in the built environment. Microbiome, 3(1), 78.
[22] Raisi, L., Aleksandropoulou, V., Lazaridis, M., & Katsivela, E. (2013). Size distribution of viable, cultivable, airborne microbes and their relationship to particulate matter concentrations and meteorological conditions in a Mediterranean site. Aerobiologia, 29(2), 233-248.
[23] Saadoun, I., Tayyar, I. A. A., & Elnasser, Z. (2008). Concentrations of Airborne Fungal Contamination in the Medical Surgery Operation Theaters (OT) of Different Hospitals in Northern Jordan. 1(4), 4.
[24] Smets, W. (2016). Airborne bacteria in the atmosphere: Presence, purpose, and potential. Atmospheric Environment, 8.
[25] Spiegelman, J. (1968). The effect of central air filtration and air conditioning on pollen and microbial conta rnination. 42(4), 10.
[26] Tormo Molina, R., Gonzalo Garijo, M. A., Muñoz Rodríguez, A. F., & Silva Palacios, I. (2002). Pollen and spores in the air of a hospital out-patient ward. Allergologia et Immunopathologia, 30(4), 232-238.
[27] Trevors, J. T., & Cotter, C. M. (1990). Copper toxicity and uptake in microorganisms. 8.
[28] Ulirsch, G. V., Ball, L. M., Kaye, W., Shy, C. M., Lee, C. V., Crawford-Brown, D., Holloway, T. (2007). Effect of particulate matter air pollution on hospital admissions and medical visits for lung and heart disease in two southeast Idaho cities. Journal of Exposure Science & Environmental Epidemiology, 17(5), 478-487.
[29] Viegas, C., Ramos, C., Almeida, M., Sabino, R., Veríssimo, C., & Rosado, L. (2011, junio 21). Air fungal contamination in ten hospitals’ food units from Lisbon. 127-132.
[30] Weber, R. W. (2003). Meteorologic variables in aerobiology. 12.
[31] Womiloju, T. O., Miller, J. D., Mayer, P. M., & Brook, J. R. (2003). Methods to determine the biological composition of particulate matter collected from outdoor air. Atmospheric Environment, 37(31), 4335-4344.
[32] Xu, Z., & Yao, M. (2013). Monitoring of bioaerosol inhalation risks in different environments using a six-stage Andersen sampler and the PCR-DGGE method. Environmental Monitoring and Assessment, 185(5), 3993-4003.
[33] Zalar, P., Gostinčar, C., de Hoog, G. S., Uršič, V., Sudhadham, M., & Gunde-Cimerman, N. (2008). Redefinition of Aureobasidium pullulans and its varieties. Studies in Mycology 61: 21–38, 18.