Plataformas de comunicación y gestión de energía en sistemas rurales con IoT
Artículo Original
DOI:
https://doi.org/10.33936/riemat.v10i2.7779Palabras clave:
Plataformas en la nube, protocolos de comunicación, monitoreo energético, MQTT, UbidotsResumen
El acceso confiable y continuo a la energía eléctrica en zonas rurales sigue siendo un desafío en América Latina, debido al aislamiento geográfico, la infraestructura limitada y los elevados costos de implementación. Ante esta realidad, la adopción de tecnologías basadas en el Internet de las Cosas (IoT) representa una alternativa viable para optimizar la supervisión, gestión y eficiencia de sistemas energéticos descentralizados. Este artículo presenta un análisis comparativo de protocolos de comunicación IoT de bajo consumo y plataformas en la nube enfocadas en el monitoreo y control de energía en entornos rurales. Se empleó una metodología documental y descriptiva-comparativa, considerando criterios como rendimiento técnico, escalabilidad, consumo energético, viabilidad de implementación y adaptabilidad al contexto. Los resultados destacan la eficacia de tecnologías como LoRaWAN y MQTT, y de plataformas como ThingsBoard y Ubidots, por su robustez y bajo requerimiento de recursos. Además, se desarrolló una emulación con microcontroladores ESP32 y sensores PZEM-004T, validando la factibilidad técnica de soluciones accesibles para monitoreo y control energético rural.
Descargas
Citas
Alegre-Bravo, A., & Lindsay Anderson, C. (2023). Exploring the influence of multidimensional variables on access to electricity in rural areas of the Global South. Applied Energy, 333, 120509. https://doi.org/10.1016/j.apenergy.2022.120509
Al-Sarawi, S., Anbar, M., Alieyan, K. and Alzubaidi, M. "Internet of Things (IoT) communication protocols: Review," 2017 8th International Conference on Information Technology (ICIT), Amman, Jordan, 2017, pp. 685-690, doi: 10.1109/ICITECH.2017.8079928
Al-Shareeda, M. A., Saare, M. A., Manickam, S. and Karuppayah, S. (2023). Bluetooth low energy for internet of things: review, challenges, and open issues. Indonesian Journal of Electrical Engineering and Computer Science, 31(2), 1182-1189. http://doi.org/10.11591/ijeecs.v31.i2.pp1182-1189
Amjad, A., Azam, F., Anwar, M. W. and Butt, W. H. "A Systematic Review on the Data Interoperability of Application Layer Protocols in Industrial IoT," in IEEE Access, vol. 9, pp. 96528-96545, 2021, doi: 10.1109/ACCESS.2021.3094763
Andrade-Cedeno, R.J., Perez-Rodriguez, J.A. (2021). Análisis del Control V/f con SVM en un Accionamiento de Velocidad Variable. Dominios de la Ciencias, 7 (6), 38–62. https://www.dominiodelasciencias.com/ojs/index.php/es/article/view/2314/5028.
Astudillo, G., & Ponce, V. (2024). Hybrid Platforms for IoT in the Classroom – A Competency Analysis and Performance Evaluation. 2024 11th International Conference on Future Internet of Things and Cloud (FiCloud), 104-108. https://doi.org/10.1109/FiCloud62933.2024.00024.
Babel, W. (2022). Fieldbuses, Communication Protocols, User Interfaces, Hardware ASICs. In: Industry 4.0, China 2025, IoT. Springer, Wiesbaden. https://doi.org/10.1007/978-3-658-37852-3_5
Ballamudi, S. (2025). Evaluating IoT Platforms: An Approach Using the COPRAS Method. Journal of Data Science and Information Technology. https://doi.org/10.55124/jdit.v2i1.243
Barragán-Charry, J., Silva-Londoño, J. J., Garcés-Quintero, C. S., Jaramillo-Ramírez, O. C., Hoyos-Daza, F., & Bravo-Gómez, L. C. (2022). Sistema de Monitoreo de Señales Eléctricas y Control Automático para Eficiencia Energética con Integración IoT. Producción + Limpia, 17(2), 53–71. https://doi.org/10.22507/pml.v17n2a4
Bouali, E.-T., Abid, M. R., Boufounas, E.-M., Hamed, T. A., & Benhaddou, D. (2022). Renewable Energy Integration Into Cloud & IoT-Based Smart Agriculture. IEEE Access, 10, 1175–1191. https://doi.org/10.1109/ACCESS.2021.3138160
Calderoni, L., Maio, D., & Tullini, L. (2022). Benchmarking Cloud Providers on Serverless IoT Back-End Infrastructures. IEEE Internet of Things Journal, 9, 15255-15269. https://doi.org/10.1109/jiot.2022.3147860
Colmenares-Quintero, R. F., Baquero-Almazo, M., Kasperczyk, D., Stansfield, K. E., & Colmenares-Quintero, J. C. (2024). Analysis of IoT technologies suitable for remote areas in Colombia: Conceptual design of an IoT system for monitoring and managing distributed energy systems. Cleaner Engineering and Technology, 21, 100783. https://doi.org/10.1016/j.clet.2024.100783
Cheng, W. M., Chen, Y. J., Chen, T. C., Zhuang, X. Y., Chang, C. W., Chien, W. C., . . . Chen, R. (2024). Implementation of Mini-Greenhouse Based on Precision Agriculture. 2024 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), 1-3. https://doi.org/10.1109/ISPACS62486.2024.10868011
Chen, J. and Huang, S. "Analysis and Comparison of UART, SPI and I2C," 2023 IEEE 2nd International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA), Changchun, China, 2023, pp. 272-276, doi: 10.1109/EEBDA56825.2023.10090677
Dimitrievski A, Filiposka S, Melero FJ, Zdravevski E, Lameski P, Pires IM, Garcia NM, Lousado JP, Trajkovik V. Rural Healthcare IoT Architecture Based on Low-Energy LoRa. International Journal of Environmental Research and Public Health. 2021; 18(14):7660. https://doi.org/10.3390/ijerph18147660
Faria, J. P. D., Pombo, J. A. N., Calado, M. R. A., & Mariano, S. J. P. S. (2022). Development of an IoT communication module for energy sharing communities management and monitorization. 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), 1–5. https://doi.org/10.1109/EEEIC/ICPSEurope54979.2022.9854688
Glaroudis, D., Iossifides, A., & Chatzimisios, P. (2020). Survey, comparison and research challenges of IoT application protocols for smart farming. Computer Networks, 168, 107037. https://doi.org/10.1016/j.comnet.2019.107037
Gomez, C., Veras, J. C., Vidal, R., Casals, L., & Paradells, J. (2019). A Sigfox Energy Consumption Model. Sensors, 19(3), 681. https://doi.org/10.3390/s19030681
Gupta, A. and Charan, C. "Analysis of Universal Asynchronous Receiver-Transmitter(UART)," 2024 2nd International Conference on Device Intelligence, Computing and Communication Technologies (DICCT), Dehradun, India, 2024, pp. 194-198, doi: 10.1109/DICCT61038.2024.10532820
Hossein Motlagh, N., Mohammadrezaei, M., Hunt, J., & Zakeri, B. (2020). Internet of Things (IoT) and the Energy Sector. Energies, 13(2), 494. https://doi.org/10.3390/en13020494
Jabbar, W. A., Mei Ting, T., I. Hamidun, M. F., Che Kamarudin, A. H., Wu, W., Sultan, J., . . . Ali, M. A. H. (2024). Development of LoRaWAN-based IoT system for water quality monitoring in rural areas. Expert Systems with Applications, 242, 122862. https://doi.org/10.1016/j.eswa.2023.122862
Jaloudi, S. (2019). Communication Protocols of an Industrial Internet of Things Environment: A Comparative Study. Future Internet, 11(3), 66. https://doi.org/10.3390/fi11030066
Lakshmi, K., Latha, H. K. E., & Venkateswarlu. (2023). Design and Development of Remote Monitoring Solar Powered Agricultural Motor Pump Using Modbus and MQTT IOT. 2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE), 1-5. https://doi.org/10.1109/AIKIIE60097.2023.10390222
Levchenko, P., Bankov, D., Khorov, E., & Lyakhov, A. (2022). Performance Comparison of NB-Fi, Sigfox, and LoRaWAN. Sensors, 22(24), 9633. https://doi.org/10.3390/s22249633
Liao, C.-W., Yu, H.-C., & Liao, Y.-C. (2025). Verification of SPI Protocol Using Universal Verification Methodology for Modern IoT and Wearable Devices. Electronics, 14(5), 837. https://doi.org/10.3390/electronics14050837
Malik, A., Haque, A., & Kurukuru, V. S. B. (2022). IoT‐Based Monitoring and Management for Photovoltaic System. In Fault Analysis and its Impact on Grid‐connected Photovoltaic Systems Performance (pp. 291–318). Wiley. https://doi.org/10.1002/9781119873785.ch9
Marino, C. A., Chinelato, F., & Marufuzzaman, M. (2022). AWS IoT analytics platform for microgrid operation management. Computers & Industrial Engineering, 170, 108331. https://doi.org/10.1016/j.cie.2022.108331
Mohd Aman, A. H., Shaari, N., & Ibrahim, R. (2021). Internet of things energy system: Smart applications, technology advancement, and open issues. International Journal of Energy Research, 45(6), 8389–8419. https://doi.org/10.1002/er.6451
Mota, A., Serôdio, C., Briga-Sá, A., & Valente, A. (2025). Implementation of an Internet of Things Architecture to Monitor Indoor Air Quality: A Case Study During Sleep Periods. Sensors, 25(6), 1683. https://doi.org/10.3390/s25061683
Nizam, M. S. M., Abdullah, E., Hidayat, N. M., Hashim, N. M. Z., & Hassan, M. A. A. (2024). Real-Time Energy Monitoring in Renewable EV Charging Stations: An ESP32-Based System Integrating Modbus, MQTT, and ESP-NOW Protocols. 2024 IEEE 22nd Student Conference on Research and Development (SCOReD), 339–344. https://doi.org/10.1109/SCOReD64708.2024.10872647
Niu, L. "Design of intelligent agricultural environmental big data collection system based on ZigBee and NB-IoT," 2023 IEEE 2nd International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA), Changchun, China, 2023, pp. 1299-1304, doi: 10.1109/EEBDA56825.2023.10090649
Oksanen, T., Linkolehto, R., & Seilonen, I. (2016). Adapting an industrial automation protocol to remote monitoring of mobile agricultural machinery: a combine harvester with IoT. IFAC-PapersOnLine, 49(16), 127-131. https://doi.org/10.1016/j.ifacol.2016.10.024
Othman, A., & Zakaria, N. H. (2020). Energy Meter based Wireless Monitoring System using Blynk Application via smartphone. 2020 IEEE 2nd International Conference on Artificial Intelligence in Engineering and Technology (IICAIET), 1–5. https://doi.org/10.1109/IICAIET49801.2020.9257827
Pereira, G. P., & Chaari, M. Z. (2023). Comparison of Blynk IoT and ESP Rainmaker on ESP32 as Beginner-Friendly IoT Solutions. En Lecture notes in computer science (pp. 123-132). https://doi.org/10.1007/978-3-031-23582-5_9
Pierleoni, P., Concetti, R., Belli, A., & Palma, L. (2020). Amazon, Google and Microsoft Solutions for IoT: Architectures and a Performance Comparison. IEEE Access, 8, 5455-5470. https://doi.org/10.1109/ACCESS.2019.2961511
Qaisar, F., Shahab, H., Iqbal, M., Sargana, H., Aqeel, M., & Qayyum, M. (2023). Recent Trends in Cloud Computing and IoT Platforms for IT Management and Development: A Review. Pakistan Journal of Engineering and Technology. https://doi.org/10.51846/vol6iss1pp98-105
Sánchez Millán F, Ortiz FJ, Mestre Ortuño TC, Frutos A, Martínez V. Development of Smart Irrigation Equipment for Soilless Crops Based on the Current Most Representative Water-Demand Sensors. Sensors. 2023; 23(6):3177. https://doi.org/10.3390/s23063177
Shaik, M. S., Shah, D., Chetty, R., & Marathe, R. R. (2020). A LoRaWAN based Open Source IOT Solution for Monitoring Rural Electrification Policy. 2020 International Conference on COMmunication Systems & NETworkS (COMSNETS), 888–890. https://doi.org/10.1109/COMSNETS48256.2020.9027490
Shaikh, M., Shah, P., & Sekhar, R. (2023). Communication Protocols in Industry 4.0. 2023 International Conference on Sustainable Emerging Innovations in Engineering and Technology (ICSEIET), 709-714. 10.1109/ICSEIET58677.2023.10303397
Sharma, N., Agarwal, R. (2023). HTTP, WebSocket, and SignalR: A Comparison of Real-Time Online Communication Protocols. In: Kadry, S., Prasath, R. (eds) Mining Intelligence and Knowledge Exploration. MIKE 2023. Lecture Notes in Computer Science(), vol 13924. Springer, Cham. https://doi.org/10.1007/978-3-031-44084-7_13
Tang, R., Aridas, N. K., & Abu Talip, M. S. (2023). Design of Wireless Sensor Network for Agricultural Greenhouse Based on Improved Zigbee Protocol. Agriculture, 13(8), 1518. https://doi.org/10.3390/agriculture13081518
Tian, L., Santi, S., Seferagić, A., Lan, J., & Famaey, J. (2021). Wi-Fi HaLow for the Internet of Things: An up-to-date survey on IEEE 802.11ah research. Journal of Network and Computer Applications, 182, 103036. https://doi.org/10.1016/j.jnca.2021.103036
Vaidya, D., Mukherjee, S., Zagrodnik, M. A. and P. Wang, "A review of communication protocols and topologies for power converters," IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 2017, pp. 2233-2238, doi: 10.1109/IECON.2017.8216376
Yousuf, M., Alsuwian, T., Amin, A. A., Fareed, S., & Hamza, M. (2024). IoT-based health monitoring and fault detection of industrial AC induction motor for efficient predictive maintenance. Measurement and Control, 57(8), 1146–1160. https://doi.org/10.1177/00202940241231473
Yuan, J., Xiao, H., Shen, Z., Zhang, T., & Jin, J. (2023). ELECT: Energy-efficient intelligent edge–cloud collaboration for remote IoT services. Future Generation Computer Systems, 147, 179–194. https://doi.org/10.1016/j.future.2023.04.030
Zich, J., & Jandik, J. (2020). Active Battery Management System for Home Battery Energy Storage. 2020 21st International Scientific Conference on Electric Power Engineering (EPE), 1-4. https://doi.org/10.1109/EPE51172.2020.9269172
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Concepción Elizabeth Carreño Chávez, Maria Magdalena Moreira Loor, Rogger José Andrade Cedeño

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.