Emotions and Technology in Education: a Review Focused on Motivation

Emociones y tecnología en la educación: una revisión centrada en la motivación

Authors

DOI:

https://doi.org/10.33936/cognosis.v10iEE(1).7684

Abstract

This study analyzes the impact of emotional intelligence on motivation, subjective well-being, academic burnout, and the use of affective technologies within human-computer interaction (HCI) in these settings. Through a systematic literature review, the study explores the relationships between emotions, educational technologies, and academic performance, highlighting the importance of considering the emotional dimension in the design of learning environments. The author bases a strong postulate on recent findings on the educational and psychological space that showed that students with higher levels of emotional intelligence exhibit greater intrinsic motivation, lower academic burnout, and higher levels of subjective well-being. At the same time, how technologies allow the possibility for pedagogical and psychological strategies to be adapted improving the personalization of learning and therefore aiding to a desired educational performance.

KEYWORDS: Emotional intelligence; affective technologies; human-computer interaction; motivation; educational ethics.

Downloads

Download data is not yet available.

References

Alenezi, A. (2024). The effect of emotional intelligence on higher education: A pilot study on the interplay between artificial intelligence, emotional intelligence, and e-learning. Multidisciplinary Journal for Education, Social and Technological Sciences, 11(2), 51-77.https://doi.org/10.4995/muse.2024.21367

Al-Saadawi, H. F. T., Das, B., & Das, R. (2024). A systematic review of trimodal affective computing approaches: Text, audio, and visual integration in emotion recognition and sentiment analysis. Expert Systems with Applications, 124852. https://doi.org/10.1016/j.eswa.2024.124852

Aly, M. (2024). Revolutionizing online education: Advanced facial expression recognition for real-time student progress tracking via deep learning model. Multimedia Tools and Applications, 1-40. https://doi.org/10.1007/s11042-024-19392-5

Arksey, H., & O’Malley, L. (2005). Scoping studies: towards a methodological framework. International Journal of Social Research Methodology, 8(1), 19–32. https://doi.org/10.1080/1364557032000119616

Arockia, V. J., Vettriselvan, R., Rajesh, D., Velmurugan, P. R. R., & Cheelo, C. (2025). Leveraging AI and Learning Analytics for Enhanced Distance Learning: Transformation in Education. In AI and Learning Analytics in Distance Learning (pp. 179-206). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-7195-4.ch008

Bazurto Palma, C. J., & Ocaña Garzón, M. (2023). The use of a virtual environment to improve students’ Listening skills: a learning analytics approach. Ciencia Latina Revista Científica Multidisciplinar, 7(2), 2937-2953. https://doi.org/10.37811/cl_rcm.v7i2.5537

Chaudhary, G. (2024). Unveiling the black box: Bringing algorithmic transparency to AI. Masaryk University Journal of Law and Technology, 18(1), 93-122.

Chen, J., Mokmin, N. A. M., & Qi, S. (2025). Generative AI-powered arts-based learning in middle school history: Impact on achievement, motivation, and cognitive load. The Journal of Educational Research, 1-13. https://doi.org/10.1080/00220671.2025.2510395

Chen, S., Cheng, H., & Huang, Y. (2024). Emotion Recognition in Self-Regulated Learning: Advancing Metacognition through AI-Assisted Reflections. In Trust and Inclusion in AI-Mediated Education: Where Human Learning Meets Learning Machines (pp. 185-212). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-64487-0_9

Ding, L., & Zou, D. (2024). Automated writing evaluation systems: A systematic review of Grammarly, Pigai, and Criterion with a perspective on future directions in the age of generative artificial intelligence. Education and Information Technologies, 29(11), 14151-14203. https://doi.org/10.1007/s10639-023-12402-3

Fernández-Herrero, J. (2024). Evaluating recent advances in affective intelligent tutoring systems: A scoping review of educational impacts and future prospects. https://doi.org/10.3390/educsci14080839

Flores, H. I. O. (2023). Human computer interaction’s insights into the recognition of love: a comprehensive framework. Tierra Infinita, 9(1), 228-245. https://doi.org/10.32645/26028131.1254

Flores, H. I. O. (2025). Creating an Adaptive Voice and Language Model Capable of Emotional Response and Self-Profiling to Emulate User Personality. Ciencia Latina Revista Científica Multidisciplinar, 9(1), 3454-3471. https://doi.org/10.37811/cl_rcm.v9i1.16093

Flores, H. I. O., & Luna, A. (2024). AI for Psychological Profiles: Advances, Challenges, and Future Directions. Ciencia Latina Revista Científica Multidisciplinar, 8(3), 10592-10609. https://doi.org/10.37811/cl_rcm.v8i3.12221

Glickman, M., & Sharot, T. (2025). How human–AI feedback loops alter human perceptual, emotional and social judgements. Nature Human Behaviour, 9(2), 345-359. https://doi.org/10.1038/s41562-024-02077-2

Guallichico, G., Ocaña, M., Tejada, C., Bautista, C. (2023). Assessing Digital Competence Through Teacher Training in Early Education Teachers. In: Botto-Tobar, M., Zambrano Vizuete, M., Montes León, S., Torres-Carrión, P., Durakovic, B. (eds) Applied Technologies. ICAT 2022. Communications in Computer and Information Science, vol 1757. Springer, Cham. https://doi.org/10.1007/978-3-031-24978-5_6

Härting, R. C., Schmidt, S., & Krum, D. (2021). Potentials of Emotionally Sensitive Applications Using Machine Learning. In Human Centred Intelligent Systems: Proceedings of KES-HCIS 2020 Conference (pp. 207-219). Springer Singapore. https://doi.org/10.1007/978-981-15-5784-2_17

Kaklauskas, A., Abraham, A., Ubarte, I., Kliukas, R., Luksaite, V., Binkyte-Veliene, A., ... & Kaklauskiene, L. (2022). A review of AI cloud and edge sensors, methods, and applications for the recognition of emotional, affective and physiological states. Sensors, 22(20), 7824-7824. https://doi.org/10.3390/s22207824

Khediri, N., Ben Ammar, M., & Kherallah, M. (2024). A Real-time Multimodal Intelligent Tutoring Emotion Recognition System (MITERS). Multimedia Tools and Applications, 83(19), 57759-57783. https://doi.org/10.1007/s11042-023-16424-4

Kim, J., Yang, K., Min, J., & White, B. (2022). Hope, fear, and consumer behavioral change amid COVID‐19: Application of protection motivation theory. International Journal of Consumer Studies, 46(2), 558-574. https://doi.org/10.1111/ijcs.12700

Kivijärvi, H., & Pärnänen, K. (2023). Instrumental usability and effective user experience: Interwoven drivers and outcomes of Human-Computer interaction. International Journal of Human–Computer Interaction, 39(1), 34-51. https://doi.org/10.1080/10447318.2021.2016236

Le, U. P. N., Nguyen, A. T. T., Van Nguyen, A., Huynh, V. K., Le Bui, C. T., & Nguyen, A. L. T. (2024, August). How Do Emotional Support and Emotional Exhaustion Affect the Relationship Between Incivility and Students’ Subjective Well-Being?. In Disruptive Technology and Business Continuity: Proceedings of The 5th International Conference on Business (ICB 2023) (pp. 237-248). Singapore: Springer Nature Singapore.

Lee, Y. F., Hwang, G. J., & Chen, P. Y. (2022). Impacts of an AI-based cha bot on college students’ after-class review, academic performance, self-efficacy, learning attitude, and motivation. Educational technology research and development, 70(5), 1843-1865.https://doi.org/10.1007/s11423-022-10142-8

Lin, C. C., Huang, A. Y., & Lu, O. H. (2023). Artificial intelligence in intelligent tutoring systems toward sustainable education: a systematic review. Smart Learning Environments, 10(1), 1-22. https://doi.org/10.1186/s40561-023-00260-y

Liu, C. Y., & fShi, B. (2024). Affective foundations in AI-human interactions: Insights from evolutionary continuity and interspecies communications. Computers in Human Behavior, 161, 108406. https://doi.org/10.1016/j.chb.2024.108406

Luna, A., Ocaña, M., Rodríguez-Moreno, J., & Ortíz-Colón, A. M. (2025). Establishing the foundation for technology adoption: profiles of military students in the digital age. Frontiers in Psychology, 16, 1593326. https://doi.org/10.3389/fpsyg.2025.1593326

Marey, A., Arjmand, P., Alerab, A. D. S., Eslami, M. J., Saad, A. M., Sanchez, N., & Umair, M. (2024). Explainability, transparency and black box challenges of AI in radiology: Impact on patient care in cardiovascular radiology. Egyptian Journal of Radiology and Nuclear Medicine, 55(1), 183. https://doi.org/10.1186/s43055-024-01356-2

Mattioli, M., & Cabitza, F. (2024). Not in my face: Challenges and ethical considerations in automatic face emotion recognition technology. Machine Learning and Knowledge Extraction, 6(4), 2201-2231. https://doi.org/10.3390/make6040109

McStay, A. (2020). Emotional AI, soft biometrics and the surveillance of emotional life: An unusual consensus on privacy. Big Data & Society, 7(1), 2053951720904386. https://doi.org/10.1177/2053951720904386

Namaziandost, E., & Rezai, A. (2024). Interplay of academic emotion regulation, academic mindfulness, L2 learning experience, academic motivation, and learner autonomy in intelligent computer-assisted language learning: A study of EFL learners. System, 125, 103419. https://doi.org/10.1016/j.system.2024.103419

Ngo, D., Nguyen, A., Dang, B., & Ngo, H. (2024). Facial expression recognition for examining emotional regulation in synchronous online collaborative learning. International Journal of Artificial Intelligence in Education, 34(3), 650-669. https://doi.org/10.1007/s40593-023-00378-7

Nicolescu, L., & Tudorache, M. T. (2022). Human-computer interaction in customer service: the experience with AI chatbots—a systematic literature review. Electronics, 11(10), 1579. https://doi.org/10.3390/electronics11101579

Ocaña, M., García-Cañarte, A., & Rosales, M. (2024). Enhancing EFL Vocabulary Through Short Stories: Insights from Learning Analytics. In International Conference on Intelligent Information Technology (pp. 438-449). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-87701-8_32

Ocaña, M., Almeida, E., Albán, S. (2022). How Did Children Learn in an Online Course During Lockdown?: A Piagetian Approximation. In: Botto-Tobar, M., Cruz, H., Díaz Cadena, A., Durakovic, B. (eds) Emerging Research in Intelligent Systems. CIT 2021. Lecture Notes in Networks and Systems, vol 406. Springer, Cham. https://doi.org/10.1007/978-3-030-96046-9_20

Pacheco-Mendoza, S., Guevara, C., Mayorga-Albán, A., & Fernández-Escobar, J. (2023). Artificial intelligence in higher education: A predictive model for academic performance. Education Sciences, 13(10), 990.https://doi.org/10.3390/educsci13100990

Pekrun, R. (2024). Control-value theory: From achievement emotion to a general theory of human emotions. Educational Psychology Review, 36(3), 1-36. https://doi.org/10.1007/s10648-024-09909-7

Roemmich, K., & Andalibi, N. (2021). Data subjects' conceptualizations of and attitudes toward automatic emotion recognition-enabled wellbeing interventions on social media. Proceedings of the ACM on Human-Computer Interaction, 5(CSCW2), 1-34. https://doi.org/10.1145/3476049

Salloum, S. A. (2024). Trustworthiness of the AI. In Artificial intelligence in education: The power and dangers of ChatGPT in the classroom (pp. 643-650). Cham: Springer Nature Switzerland.

Sarnou, D., & Sarnou, H. (2023). Highlighting the Consequences of Ignoring Children's Emotions in Schools: Case of 30 pupils in 3 Algerian Primary Schools. Academy Journal of Educational Sciences, 6(1), 44-51.https://doi.org/10.31805/acjes.1091001

Schmitz-Hübsch, A., Stasch, S. M., Becker, R., Fuchs, S., & Wirzberger, M. (2022). Affective Response Categories-Toward Personalized Reactions in Affect-Adaptive Tutoring Systems. Frontiers in artificial intelligence, 5, 873056. https://doi.org/10.3389/frai.2022.873056

Shah, M., & Sureja, N. (2025). A comprehensive review of bias in deep learning models: Methods, impacts, and future directions. Archives of Computational Methods in Engineering, 32(1), 255-267. https://doi.org/10.1007/s11831-024-10134-2

Shi, L. (2025). The integration of advanced AI-enabled emotion detection and adaptive learning systems for improved emotional regulation. Journal of Educational Computing Research, 63(1), 173-201. https://doi.org/10.1177/07356331241296890

Sirisha, N., Mageswari, P., Raj, V. M., Kumar, S., Priya, R. V., & Ananthi, S. (2025, May). Emotion Centric Artificial Intelligence Driven Engagement Systems for Adaptive Learning Environments Personalized Knowledge Acquisition and Cognitive Skill Enhancement. In International Conference on Sustainability Innovation in Computing and Engineering (ICSICE 2024) (pp. 528-540). Atlantis Press. https://doi.org/10.2991/978-94-6463-718-2_46

Villamarín, A., Chumaña, J., Narváez, M., Guallichico, G., Ocaña, M., & Luna, A. (2023, November). Artificial Intelligence in the Detection of Autism Spectrum Disorders (ASD): a Systematic Review. In International Conference on Intelligent Vision and Computing (pp. 21-32). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-71388-0_3

Yin, J., Goh, T. T., & Hu, Y. (2024). Interactions with educational chatbots: the impact of induced emotions and students’ learning motivation. International Journal of Educational Technology in Higher Education, 21(1), 1-23. https://doi.org/10.1186/s41239-024-00480-3

Yuvaraj, R., Mittal, R., Prince, A. A., & Huang, J. S. (2025). Affective Computing for Learning in Education: A Systematic Review and Bibliometric Analysis. Education Sciences, 15(1), 1-47. https://doi.org/10.3390/educsci15010065

Zhao, G., Li, Y., & Xu, Q. (2022). From emotion AI to cognitive AI. International Journal of Network Dynamics and Intelligence, 65-72. https://doi.org/10.53941/ijndi0101006

Published

2025-04-24

How to Cite

Ocana Flores, H. I. (2025). Emotions and Technology in Education: a Review Focused on Motivation: Emociones y tecnología en la educación: una revisión centrada en la motivación. Cognosis Journal. ISSN 2588-0578, 10(EE(1), 128–140. https://doi.org/10.33936/cognosis.v10iEE(1).7684