Procedure for the forecast of exchange rates. Applying artificial neural networks: EUR/USD
DOI:
https://doi.org/10.33936/eca_sinergia.v13i2.4149Keywords:
inteligencia artificial, pronósticos, redes neuronales recurrentes, series de tiempo.Abstract
The forecast of the exchange rate is an essential part of foreign exchange risk management strategy, which drives the search for new techniques that are more effective. The procedure presented in this work was created in order to facilitate the use of artificial intelligence algorithms for exchange rate forecasting. The procedure is based on the use of quantitative methods to obtain the forecast, the most important being the use of artificial neural networks, specifically those called long short-term memory. The construction of different models is carried out, from which the optimal one is chosen using the square root of the mean square error as the selection criterion. The efficacy of the procedure was demonstrated after obtaining models that perform with an effectiveness comprised in the range of 97.28% - 99.55%. Keywords: artificial intelligence, prognostic, recurrent neural networks, time series.Downloads
Download data is not yet available.
References
Allaire, J. J., & Chollet, F. (2020). keras: R Interface to 'Keras'. R package version 2.3.0.0. https://CRAN.R-project.org/package=keras
Allaire, J. J., & Tang,Y. (2020). tensorflow: R Interface to 'TensorFlow'. R package version 2.2.0. Recuperado de: https://CRAN.R-project.org/package=tensorflow
Brownlee, J. (2016). «Time series forecasting as Supervised Learning». Machine Learning Mastery. Recuperado de de: https://machinelearningmastery.com/time-series-forecasting-supervised-learning/
Brownlee, J. (2017). «How to use timesteps in LSTM networks for time series forecasting». Machine Learning Mastery. Reccuperado de: https://machinelearningmastery.com/use-timesteps-lstm-networks-time-series-forecasting/
Brownlee, J. (2018). «Difference Between a Batch and an Epoch in a Neural Network». Machine Learning Mastery. Recuperado de: https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/
Brownlee, J. (2019). «The promise of recurrent neural networks for time series forecasting». Machine Learning Mastery. Recuperado de: https://machinelearningmastery.com/promise-recurrent-neural-networks-time-series-forecasting/
Chollet, F., & Allaire, J. J. (2018). Deep Learning with R. Manning Publication.
De la Oliva, F.,& García, A.(2020). «Procedimiento para un pronostico de la tasa de cambio euro-dólar». Revista CoFin Habana, 1. Recuperado de: http://www.cofinhab.uh.cu/index.php/RCCF/articledownload/387/377
Duncan, E.W. (2020). «A Guide to (Re-)Installing R and Related Software». Rpubs. Recuperado de: https://rpubs.com/Earlien/guide-to-installing-R
Hirekerur, R. (2020). «A Comprehensive Guide To Loss Functions – Part1:Regression». Medium. Obtenido de: https://medium.com/analytics-vidhya/a-comprehensive-guide-to-loss-functions-part-1-regression-ff8b847675d6
Hyndman, R., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O'Hara-Wild, M., Petropoulos, F., Razbash, S., Wang, E., & Yasmeen, F. (2020). _forecast: Forecasting functions for time series and linear models_. R package version 8.12. Recuperado: http://pkg.robjhyndman.com/forecast.
Hyndman, RJ., & Khandakar ,Y. (2008). “Automatic time series forecasting: the forecast package for R.” _Journal of Statistical Software_, *26*(3), 1-22. Recuperado de: http://www.jstatsoft.org/article/view/v027i03.
Keydana, S. (23 de mayo de 2017). RPubs. «Time series forecasting - with deep learning». Rpubs. Recuperado de: https://rpubs.com/zkajdan/279967
Olah, C. (27 de agosto de 2015). «Understanding LSTM networks». Colah's blog. Recuperado de: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
Phillips, N.D (2018). YaRrr! The Pirate’s Guide to R. Bookdown. Se encuentra en: Recuperado de https://bookdown.org/ndphillips/YaRrr/
R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Recuperado de https://www.R-project.org/
RStudio Team (2019). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA. Recuperado de http://www.rstudio.com/.
Torres, J. (2018). «Learning process of a neural network». Medium. Se encuentra en: https://towardsdatascience.com/how-to-artificial-neural-networks-learn-773e46399fc7
Trapletti, T., & Hornik,K. (2019). tseries: Time Series Analysis and Computational Finance. R package version 0.10-47. Recuperado de https://CRAN.R-project.org/package=tseries
Wickham, H., & Seidel,D. (2020). scales: Scale Functions for Visualization. R package version 1.1.1. Recuperado de https://CRAN.R-project.org/package=scales
Allaire, J. J., & Tang,Y. (2020). tensorflow: R Interface to 'TensorFlow'. R package version 2.2.0. Recuperado de: https://CRAN.R-project.org/package=tensorflow
Brownlee, J. (2016). «Time series forecasting as Supervised Learning». Machine Learning Mastery. Recuperado de de: https://machinelearningmastery.com/time-series-forecasting-supervised-learning/
Brownlee, J. (2017). «How to use timesteps in LSTM networks for time series forecasting». Machine Learning Mastery. Reccuperado de: https://machinelearningmastery.com/use-timesteps-lstm-networks-time-series-forecasting/
Brownlee, J. (2018). «Difference Between a Batch and an Epoch in a Neural Network». Machine Learning Mastery. Recuperado de: https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/
Brownlee, J. (2019). «The promise of recurrent neural networks for time series forecasting». Machine Learning Mastery. Recuperado de: https://machinelearningmastery.com/promise-recurrent-neural-networks-time-series-forecasting/
Chollet, F., & Allaire, J. J. (2018). Deep Learning with R. Manning Publication.
De la Oliva, F.,& García, A.(2020). «Procedimiento para un pronostico de la tasa de cambio euro-dólar». Revista CoFin Habana, 1. Recuperado de: http://www.cofinhab.uh.cu/index.php/RCCF/articledownload/387/377
Duncan, E.W. (2020). «A Guide to (Re-)Installing R and Related Software». Rpubs. Recuperado de: https://rpubs.com/Earlien/guide-to-installing-R
Hirekerur, R. (2020). «A Comprehensive Guide To Loss Functions – Part1:Regression». Medium. Obtenido de: https://medium.com/analytics-vidhya/a-comprehensive-guide-to-loss-functions-part-1-regression-ff8b847675d6
Hyndman, R., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O'Hara-Wild, M., Petropoulos, F., Razbash, S., Wang, E., & Yasmeen, F. (2020). _forecast: Forecasting functions for time series and linear models_. R package version 8.12. Recuperado: http://pkg.robjhyndman.com/forecast.
Hyndman, RJ., & Khandakar ,Y. (2008). “Automatic time series forecasting: the forecast package for R.” _Journal of Statistical Software_, *26*(3), 1-22. Recuperado de: http://www.jstatsoft.org/article/view/v027i03.
Keydana, S. (23 de mayo de 2017). RPubs. «Time series forecasting - with deep learning». Rpubs. Recuperado de: https://rpubs.com/zkajdan/279967
Olah, C. (27 de agosto de 2015). «Understanding LSTM networks». Colah's blog. Recuperado de: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
Phillips, N.D (2018). YaRrr! The Pirate’s Guide to R. Bookdown. Se encuentra en: Recuperado de https://bookdown.org/ndphillips/YaRrr/
R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Recuperado de https://www.R-project.org/
RStudio Team (2019). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA. Recuperado de http://www.rstudio.com/.
Torres, J. (2018). «Learning process of a neural network». Medium. Se encuentra en: https://towardsdatascience.com/how-to-artificial-neural-networks-learn-773e46399fc7
Trapletti, T., & Hornik,K. (2019). tseries: Time Series Analysis and Computational Finance. R package version 0.10-47. Recuperado de https://CRAN.R-project.org/package=tseries
Wickham, H., & Seidel,D. (2020). scales: Scale Functions for Visualization. R package version 1.1.1. Recuperado de https://CRAN.R-project.org/package=scales
Downloads
Published
2022-05-20
How to Cite
Oliva de Con, F. de la, Molina Fernández, R., & Díaz Rodríguez, D. (2022). Procedure for the forecast of exchange rates. Applying artificial neural networks: EUR/USD. ECA Sinergia, 13(2), 107–117. https://doi.org/10.33936/eca_sinergia.v13i2.4149
Issue
Section
Artículos
License
Copyright (c) 2022 Fidel Oliva

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

