Péptidos bioactivos presentes en la leche: revisión

Bioactive peptides present in milk: review

  • Luis Collado Universidad Complutense de Madrid
  • Tatiana García Universidad Complutense de Madrid
  • María Ciudad Universidad Complutense de Madrid
  • Elena Garicano Vilar Universidad Complutense de Madrid
  • Ismael San Mauro Universidad Complutense de Madrid

Resumen

Los péptidos bioactivos son un conjunto de moléculas de naturaleza proteica presentes en la leche de forma natural, con potenciales efectos beneficiosos en el organismo humano. El objetivo es realizar una revisión actualizada de la literatura científica sobre la acción de estos compuestos en el organismo. Se realizó una revisión bibliográfica con la base de datos MEDLINE como fuente de información. Selección de artículos científicos de las últimas 2 décadas y, de entre ellos, los artículos más relevantes sobre los diferentes compuestos y sus múltiples acciones biológicas. Se ha encontrado multitud de publicaciones recientes que registran las acciones biológicas de estos compuestos en el ser humano y muestran sus capacidades de protección de la salud y prevención de diversas patologías.


Palabras clave: leche, proteína, péptido, bioactivo.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

Citas

Jones BL, Raga TO, Liebert A, Zmarz P, Bekele E, Danielsen ET et al. Diversity of lactase persistence alleles in Ethiopia: signature of a soft selective sweep. Am J Hum Genet. 2013; 93(3):538-44.
2. Dapcich V, Salvador Castell G, Ribas Barba L, Pérez Rodrigo C, Araceta Bartrina J, Serra Majem L. Consejos para una alimentación saludable. Sociedad Española Nutrición Comunitaria, 2007.
3. Prentice AM. Dairy products in global public health. Am J Clin Nutr. 2014; 99(5):1212S-6S.
4. Bonet B, Dalmau J, Gil I, Gil P, Juarez M, Matía PM, Ortega Anta R. Libro blanco de los lácteos. Ed. 1ª. Madrid, 2007. ISBN: 978-84-612-7466-6
5. Wang Q, Imamura F, Lemaitre RN, Rimm EB, Wang M, King IB et al. Plasma phospholipid trans-fatty acids levels, cardiovascular diseases, and total mortality: the cardiovascular health study. J Am Heart Assoc. 2014; 3(4)
6. Nunes JC, Torres AG. Conjugated linoleic acid (CLA) in cheese: Analysis, composition and dietary intake. Handbook on Cheese: Production, Chemistry and Sensory Properties 2013.
7. Park Y. Conjugated Linoleic Acid in Human Health Effects on Weight Control. En: Nutrition in the Prevention and Treatment of Abdominal Obesity. March 2014.
8. Chapman MS. Vitamin a: history, current uses, and controversies. Semin Cutan Med Surg. 2012; 31(1):11-6.
9. Rizzoli R. Dairy products, yogurts, and bone health. Am J Clin Nutr. 2014; 99(5):1256S-62S
10. San Mauro-Martin I, Collado- Yurrita L, Ciudad-Cabanas MJ, Cuadrado-Cenzual MC, Hernandez-Cabria M, Calle-Puron ME. Manejo del riesgo de enfermedad cardiovascular con leche enriquecida en esteroles en población joven adulta; ensayo clínico controlado aleatorizado y cruzado. Nutr Hosp. 2014; 30(4):945-951.
11. Marshall K. Therapeutic applications of whey protein. Altern Med Rev. 2004; 9(2):136-56.
12. Meisel H. Overview on milk protein-derived peptides. Int Dairy J. 1998; 8:363-73.
13. Roberts PR, Zaloga GP. Dietary bioactive peptides. New Horiz. 1994; 2(2):237-43.
14. Kitts DD. Bioactive substances in food: identification and potential uses. Can J Physiol Pharmacol. 1994; 72(4):423-34.
15. Artym J, Zimecki M. Milk-derived proteins and peptides in clinical trials. Postepy Hig Med Dosw (Online). 2013; 67:800-16.
16. Kamiński S, Cieslińska A, Kostyra E. Polymorphism of bovine beta-casein and its potential effect on human health. J Appl Genet. 2007; 48(3):189-98.
17. Lucarelli S, Frediani T, Zingoni AM, Ferruzzi F, Giardini O, Quintieri F, Barbato M, D'Eufemia P, Cardi E. Food allergy and infantile autism. Panminerva Med. 1995; 37(3):137-41.
18. Haque E, Chand R, Kapila S. Biofunctional Properties of Bioactive Peptides of Milk Origin Food Rev. Int. 2008; 25(1):28-43.
19. Candioti MC. Respuesta de las proteínas del suero de la leche bovina a la acción de diversas enzimas proteolíticas de uso industrial [Tesis]. Santa Fe: Facultad de Ingeniería Química, Universidad Nacional del Litoral; 2012.
20. Fleminger G, Ragones H, Merin U, Silanikove N, Leitner G. Low molecular mass peptides generated by hydrolysis of casein impair rennet coagulation of milk. Int. Dairy J. 2013; 30(2):74-78.
21. Ohno F, Sugahara T, Kanda K, Nishimoto S. Proteose peptone fraction of bovine milk depressed IgE production in vitro and in vivo. Biosci Biotechnol Biochem. 2010; 74(7):1332-7.
22. Kim Y, Atalla H, Mallard B, Robert C, Narrow N. Changes in Holstein cow milk and serum proteins during intramammary infection with three different strains of Staphylococcus aureus. BMC Vet Res. 2011; 7:51.
23. Sugahara T, Onda H, Shinohara Y, Horii M, Akiyama K, Nakamoto K et al. Immunostimulation effects of proteose-peptone component 3 fragment on human hybridomas and peripheral blood lymphocytes. Biochim Biophys Acta. 2005; 1725(2):233-40.
24. Inagaki M, Xijier, Nakamura Y, Takahashi T, Yabe T, Nakagomi T et al. Production and functional properties of dairy products containing lactophorin and lactadherin. En: Y. El-Samragy (Ed.). Food Additives. InTech, Rijeka, Croatia; 2012. p. 49–64.
25. Campagna S, Mathot AG, Fleury Y, Girardet JM, Gaillard JL. Antibacterial activity of lactophoricin, a synthetic 23-residues peptide derived from the sequence of bovine milk component-3 of proteose peptone. J Dairy Sci. 2004; 87(6):1621-6.
26. Schack L, Lange A, Kelsen J, Agnholt J, Christensen B, Petersen TE et al. Considerable variation in the concentration of osteopontin in human milk, bovine milk, and infant formulas. J Dairy Sci. 2009; 92(11):5378-85.
27. Weber GF, Zawaideh S, Hikita S, Kumar VA, Cantor H, Ashkar S.J. Phosphorylation-dependent interaction of osteopontin with its receptors regulates macrophage migration and activation. Leukoc Biol. 2002; 72(4):752-61.
28. Pang H, Lu H, Song H, Meng Q, Zhao Y, Liu N et al. Prognostic values of osteopontin-c, E-cadherin and β-catenin in breast cancer. Cancer Epidemiol. 2013; 37(6):985-92.
29. Bramwell VH, Tuck AB, Chapman JA, Anborgh PH, Postenka CO, Al-Katib W et al. Assessment of osteopontin in early breast cancer: correlative study in a randomised clinical trial. Breast Cancer Res. 2001; 16(1):R8.
30. Ramchandani D, Weber GF. An osteopontin promoter polymorphism is associated with aggressiveness in breast cancer. Oncol Rep. 2013; 30(4):1860-8.
31. Holt C, Sørensen ES, Clegg RA. Role of calcium phosphate nanoclusters in the control of calcification. FEBS J. 2009; 276(8):2308-23.
32. Standal T, Borset M, Sundan A. Role of osteopontin in adhesion, migration, cell survival and bone remodeling. Exp Oncol. 2004; 26(3):179-84.
33. Gericke A, Qin C, Spevak L, Fujimoto Y, Butler WT, Sørensen ES, Boskey AL. Importance of Phosphorylation for Osteopontin Regulation of Biomineralization. Calcif Tissue Int. 2005; 77(1): 45–54.
34. Pampena DA, Robertson KA, Litvinova O, Lajoie G, Goldberg HA, Hunter GK. Inhibition of hydroxyapatite formation by osteopontin phosphopeptides. Biochem J. 2004; 378(Pt 3):1083-7.
35. Agnholt J1, Kelsen J, Schack L, Hvas CL, Dahlerup JF, Sørensen ES. Osteopontin, a protein with cytokine-like properties, is associated with inflammation in Crohn's disease. Scand J Immunol. 2007; 65(5):453-60.
36. Pepe G, Tenore GC, Mastrocinque R, Stusio P, Campiglia P. Potential Anticarcinogenic Peptides from Bovine Milk. J Amino Acids. 2013; 2013:939804.
37. Le Maux S, Bouhallab S, Giblin L, Brodkorb A, Croguennec T. Bovine β-lactoglobulin/fatty acid complexes: binding, structural, and biological properties. Dairy Sci Technol. 2014; 94:409-426.
38. Kontopidis G, Holt C, Sawyer L. The ligand-binding site of bovine beta-lactoglobulin: evidence for a function? J Mol Biol. 2002; 318(4):1043-55
39. Kontopidis G, Holt C, Sawyer L. Invited review: beta-lactoglobulin: binding properties, structure, and function. J Dairy Sci. 2004; 87(4):785-96.
40. Guimont C, Marchall E, Girardet JM, Linden G. Biologically active factors in bovine milk and dairy byproducts: influence on cell culture. Crit Rev Food Sci Nutr 1997; 37:393-410.
41. Sahihi M, Ghayeb Y. An investigation of molecular dynamics simulation and molecular docking: interaction of citrus flavonoids and bovine β-lactoglobulin in focus. Comput Biol Med. 2014; 51:44-50.
42. Mensi A, Borel P, Goncalves A, Nowicki M, Gleize B, Roi S, Chobert JM, Haertlé T, Reboul E. β-lactoglobulin as a vector for β-carotene food fortification. J Agric Food Chem. 2014; 62(25):5916-24.
43. Heine W.E., Klein P.D., Reeds P.J.: The importance of alpha-lactalbumin in infant nutrition. J Nutr. 1991; 121: 277-283
44. Teschemacher H, Koch G. Opioids in the milk. Endocr Regul. 1991;25(3):147-50.
45. Teschemacher H. Opioid receptor ligands derived from food proteins. Curr Pharm Des. 2003;9(16):1331-44.
46. Hernández-Ledesma B, Amigo L, Ramos M, Recio I. Angiotensin converting enzyme inhibitory activity in commercial fermented products. Formation of peptides under simulated gastrointestinal digestion. J Agric Food Chem. 2004; 52(6):1504-10.
47. Haque E, Chand R, Kapila S. Biofunctional Properties of Bioactive Peptides of Milk Origin. Food Rev Int. 2008; 25(1):28-43.
48. Gobbetti M, Stepaniak L, De Angelis M, Corsetti A, Di Cagno R. Latent Bioactive Peptides in Milk Proteins: Proteolytic Activation and Significance in Dairy Processing. Crit. Rev. Food Sci. Nutr. 2002; 42(3):223-239.
49. Sachdeva A, Rawat S, Nagpal J. Efficacy of fermented milk and whey proteins in Helicobacter pylori eradication: a review. World J Gastroenterol. 2014; 20(3):724-37.
50. Ushida Y, Shimokawa Y, Toida T, Matsui H, Takase M. Bovine alpha-lactalbumin stimulates mucus metabolism in gastric mucosa. J Dairy Sci. 2007; 90(2):541-6.
51. Yamaguchi M, Takai S, Hosono A, Seki T. Bovine milk-derived α-lactalbumin inhibits colon inflammation and carcinogenesis in azoxymethane and dextran sodium sulfate-treated mice. Biosci Biotechnol Biochem. 2014; 78(4):672-9.
52. Bounous G, Kongshavn PA. Influence of dietary proteins on the immune system of mice. J Nutr. 1982; 112:1747-1755.
53. Bounous G, Kongshavn PA. Differential effect of dietary protein type on the B-cell and T-cell immune responses in mice. J Nutr 1985; 115:1403-1408.
54. Kulczycki A Jr, MacDermott RP. Bovine IgG and human immune responses: Con A-induced mitogenesis of human mononuclear cells is suppressed by bovine IgG. Int Arch Allergy Appl Immunol 1985; 77:255-258.
55. Brody EP. Biological activities of bovine glycomacropeptide. Br J Nutr 2000; 84:S39-S46.
56. Cosentino S, Gravaghi C, Donetti E, Donida BM, Lombardi G, Bedoni M et al. Caseinphosphopeptide-induced calcium uptake in human intestinal cell lines HT-29 and Caco2 is correlated to cellular differentiation. J Nutr Biochem. 2010; 21(3):247-54.
57. Adolphi B, Scholz-Ahrens KE, de Vrese M, Açil Y, Laue C, Schrezenmeir J. Short-term effect of bedtime consumption of fermented milk supplemented with calcium, inulin-type fructans and caseinphosphopeptides on bone metabolism in healthy, postmenopausal women. Eur J Nutr. 2009; 48(1):45-53.
58. López-Huertas E, Teucher B, Boza JJ, Martínez-Férez A, Majsak-Newman G, Baró L et al. Absorption of calcium from milks enriched with fructo-oligosaccharides, caseinophosphopeptides, tricalcium phosphate, and milk solids. Am J Clin Nutr. 2006; 83(2):310-6.
59. Mora-Gutierrez A, Farrell HM, Attaie R, McWhinney VJ, Wang C. Influence of bovine and caprine casein phosphopeptides differing in alphas1-casein content in determining the absorption of calcium from bovine and caprine calcium-fortified milks in rats. J Dairy Res. 2007; 74(3):356-66.
60. Narva M, Kärkkäinen M, Poussa T, Lamberg-Allardt C, Korpela R. Caseinphosphopeptides in milk and fermented milk do not affect calcium metabolism acutely in postmenopausal women. J Am Coll Nutr. 2003; 22(1):88-93.
61. Rodrigues L, Teixeira J, Schmitt F, Paulsson M, Månsson HL. Lactoferrin and cancer disease prevention. Crit Rev Food Sci Nutr. 2009; 49(3):203-17.
62. Ward PP, Paz E, Conneely OM. Multifunctional roles of lactoferrin: a critical overview. Cell Mol Life Sci. 2005; 62(22):2540-8.
63. Blais A, Fan C, Voisin T, Aattouri N, Dubarry M, Blachier F et al. Effects of lactoferrin on intestinal epithelial cell growth and differentiation: an in vivo and in vitro study. Biometals. 2014; 27(5):857-74.
64. Reznikov E, Comstock S, Yi C, Contractor N, Donovan S. Dietary Bovine Lactoferrin Increases Intestinal Cell Proliferation in Neonatal Piglets. J. Nutr. 2014; 144(9): 1401-1408.
65. Kruzel ML, Actor JK, Boldogh I, Zimecki M. Lactoferrin in health and disease. Postepy Hig Med Dosw (Online). 2007; 61:261-7.
66. Teraguchi S, Wakabayashi H, Kuwata H, Yamauchi K, Tamura Y. Protection against infections by oral lactoferrin: Evaluation in animal models. Biometals 2004; 17:231-234.
67. Wakabayashi H, Oda H, Yamauchi K, Abe F. Lactoferrin for prevention of common viral infections, J Infect Chemother 2014; 20(11):666-671.
68. Włodarski KH, Galus R, Brodzikowska A, Włodarski PK, Wojtowicz A. The importance of lactoferrin in bone regeneration. Pol Merkur Lekarski. 2014; 37(217):65-7.
69. Zhanga Y, Nicolaub A, Limac C, Rodrigues L. Bovine Lactoferrin Induces Cell Cycle Arrest and Inhibits Mtor Signaling in Breast Cancer Cells. Nutr. Cancer. 2014; 66(8): 1371-1385.
70. Bjorck L. Antibacterial effect of the lactoperoxidase system on psychotrophic bacteria in milk. J Dairy Res 1978; 45:109-118.
71. Kussendrager KD, van Hooijdonk AC. Lactoperoxidase: physico-chemical properties, occurrence, mechanism of action and applications. Br J Nutr 2000; 84:S19-S25.
72. Kilara A, Panyam D. Peptides from milk proteins and their properties. Crit Rev Food Sci Nutr. 2003; 43(6):607-33.
73. Song MY, Bae UJ, Jang KY, Park BH. Transplantation of betacellulin-transduced islets improves glucose intolerance in diabetic mice. Exp Mol Med. 2014; 46:e98.
74. Shi L, Wang L, Wang B, et al. Regulatory mechanisms of betacellulin in CXCL8 production from lung cancer cells. J Transl Med. 2014; 12:70.
Publicado
2017-12-21