Consideraciones breves sobre microbiota intestinal en la prevención y tratamiento de la covid-19

Authors

  • Jenny Caballero Barrios Private Practice, Princeton, FL, EE.UU.
  • Angel Eladio Caballero Torres Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo, Ecuador
  • Yumy Estela Fernández Vélez Universidad Estatal de Santa Elena, Guayaquil, Ecuador

DOI:

https://doi.org/10.33936/qkrcs.v5i1.2722

Keywords:

microbiota intestinal, COVID 19 SARS-CoV-2

Abstract

La microbiota intestinal de los miembros de la especie humana tiene un papel determinante en el estado de salud por sus contribuciones a la defensa del hospedero; mientras las alteraciones de su composición y funcionamiento pueden influir en el desarrollo de enfermedades. Por estas razones, el objetivo de este trabajo fue identificar, en publicaciones científicas, posibles asociaciones de la microbiota intestinal y respuestas del hospedero a la exposición al SARS-CoV-2. Se realizó una búsqueda y análisis de artículos científicos publicados desde enero del 2017 hasta septiembre del 2020 con explicaciones sobre microbiota intestinal que pudieran vincularse con respuestas a la exposición al SARS-CoV-2 y patogenia de la covid 19. Se encontraron informaciones relevantes sobre la vinculación de la microbiota intestinal con el envejecimiento, enfermedades cardiovasculares y pulmones. Se observaron señalamientos útiles para el tratamiento y prevención de covid 19 por lo cual es posible afirmar que la microbiota intestinal puede influir en las respuestas del hospedero a infecciones de SARS-CoV-2. No obstante, se requiere mayor dominio sobre este tema para contribuir a la superación y prevención de esta enfermedad.

Palabras clave: Microbiota intestinal, covid 19, SARS-CoV-2.

Downloads

Download data is not yet available.

References

1. Eberl G. The microbiota, a necessary element of immunity. C R Biol [Internet]. 2018;341(5):281-83. Disponible en: https://doi.org/10.1016/j.crvi.2018.03.003
2. Jackson MA, Verdi S, Maxan ME, Shin CM, Zierer J, Bowyer R, Martin T, Williams F, Menni C, Bell J, Spector T, Steves C. Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nat Commun [Internet]. 2018;9:2655. Disponible en: https://doi.org/10.1038/s41467-018-05184-7
3. Organización Mundial de la Salud. Transmission of SARS-CoV-2: implications for infection prevention precautions. Scientific brief. Disponible en: https://www.who.int/emergencies/diseases/novel-coronavirus-2019; 2020 [consultada 2020.10.02].
4. Organización Mundial de la Salud. Coronavirus disease (Covid-19). Disponible en: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200928-weekly-epi-update.pdf?sfvrsn=9e354665_6; 2020 [consultada 2020.10.01].
5. Zuo T, Zhang F, Lui G, Yeoh YK, Li A, Zhan H, Wan Y, Chung A, Cheung C, Chen N, Lai C, Chen Z, Tso E, Fung K, Chan V, Ling L, Joynt G, Hui D, Chan F, Chan P, Ng S. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology [Internet]. 2020;159(3):944-55.e8. Disponible en: https://doi.org/10.1053/j.gastro.2020.05.048
6. Gu S, Chen Y, Wu Z, Chen Y, Gao H, Longxian L, Guo F, Zhang X, Luo R, Huang C, Lu H, Zheng B, Zhang J, Yan R, Zhang H, Jiang H, Xu Q, Guo J, Gong Y, Tang L, Li L. Alterations of the gut microbiota in patients with coronavirus disease 19 or H1N1 influenza. Clin Infect Dis [Internet]. 2020;ciaa709. Disponible en: https://doi.org/10.1093/cid/ciaa709
7. James S, Fraser K, Young W, McNabb W, Roy N. Gut microbial metabolites and biochemical pathways involved in irritable bowel. J Nutr [Internet]. 2020;150(5):1012-21. Disponible en: https://doi.org/10.1093/jn/nxz302
8. Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe [Internet]. 2018;23(6):716-24. Disponible en: https://doi.org/10.1016/j.chom.2018.05.003
9. Whang Z, Zhao Y. Gut microbiota derived metabolites in cardiovascular health and disease. Protein cell [Internet]. 2018;9(5):416-31. Disponible en: https://dx.doi.org/10.1007/s13238-018-0549-0
10. Viana S, Nunes S, Reis F. ACE2 imbalance as a key player for the poor outcomes in COVID-19 patients with age-related comorbidities – Role of gut microbiota dysbiosis. Ageing Res Rev [Internet]. 2020;62:101123. Disponible en: https://dx.doi.org/10.1016/j.arr.2020.101123
11. Wu L, Zeng T, Deligios M, Milanesi L, Langille M, Zinellu A, Rubino S, Carru C, Kelvin DJ. Age-related variation of bacterial and fungal communities in different body habitats across the young, elderly, and centenarians in Sardinia. mSphere [Internet]. 2020;5(1):e00558-19. Disponible en: https://doi.org/10.1128/mSphere.00558-19
12. Luan Z, Sun G, Huang Y, Yang Y, Yang R, Li C, Wang T, Tan D, Qi S, Jun C, Wang C, Wang S, Zhao Y, Jing Y. Metagenomics study reveals changes in gut microbiota in centenarians: A cohort study of Hainan centenarians. Front Microbiol [Internet]. 2020;11(1474). Disponible en: https://doi.org/10.3389/fmicb.2020.01474
13. Kim S, Jazwinski SM. The gut microbiota and healthy aging: A mini-review. Gerontology [Internet]. 2018;64(6):513-20. Disponible en: https://doi.org/10.1159/000490615
14. Santoro A, Ostan R, Candela M, Biagi E, Brigidi P, Capri M, Franceschi C. Gut microbiota changes in the extreme decades of human life: a focus on centenarians. Cell Mol Life Sci [Internet]. 2018;75:129-48. Disponible en: https://doi.org/10.1007/s00018-017-2674-y
15. Rampelli S, Soverini M, D’Amico F, Barone M, Tavella T, Monti, Capri M, Astolfi A, Brigidi P, Biagi E, Franceschi C, Turroni S, Candela M. Shotgun metagenomics of gut microbiota in humans with up to extreme longevity and the increasing role of xenobiotic degradation. mSystems [Internet]. 2020;5:e00124-20. Disponible en: https://doi.org/10.1128/mSystems.00124-20
16. Enaud R, Prevel R, Ciarlo E, Beaufils F, Wieërs G, Guery B, Delhaes L. The gut-lung axis in health and respiratory diseases: a place for inter-organ and inter-kingdom crosstalks. Front Cell Infect Microbiol [Internet]. 2020;10. Disponible en: https://dx.doi.org/10.3389%2Ffcimb.2020.00009
17. Conte L, Toraldo DM. Targeting the gut-lung microbiota axis by means of a high fibre diet and probiotics may have anti-inflammatory effects in COVID 19 infection. Ther Adv Respir Dis [Internet]. 2020;14:1-5. https://dx.doi.org/10.1177%2F1753466620937170
18. Scarpellini E, Fagoonee S, Rinninella E, Rasetti C, Aquila I, Larussa T, Ricci P, Luzza F, Abenavoli L. Gut Microbiota and liver interaction through immune system cross-talk: a comprehensive review at the time of the SARS-CoV-2 pandemic. J Clin Med [Internet]. 2020;9(8):2488. Disponible en: https://doi.org/10.3390/jcm9082488
19. He Y, Wang J, Li F, Shi Y. Main clinical features of Covid 19 and potential prognostic and terapeutic value of the microbiota in SARS CoV 2 infections. Front Microbiol [Internet]. 2020;11:1302. Disponible en: https://doi.org/10.3389/fmicb.2020.01302
20. Aktas B, Aslim B. Gut-lung axis and dysbiosis in COVID 19. Turk J Biol [Internet]. 2020;44(3):265-72. Disponible en: https://dx.doi.org/10.3906%2Fbiy-2005-102
21. Fanos V, Pintus MC, Pintus R, Marcialis MA. Lung microbiota in the acute respiratory disease: from coronavirus to metabolomics. J Pediatr Neonat Individual Med [Internet]. 2020;9(1):e090139. Disponible en: https://doi.org/10.7363/090139
22. Shruti A, Krishna S. Immunological co-ordination between gut and lungs in SARS-CoV-2 infection. Virus Res [Internet]. 2020;286:198103. Disponible en: https://doi.org/10.1016/j.virusres.2020.198103
23. He L-H, Ren L-F, Li J-F, Wu Y-N, Li X, Zhang L. Intestinal flora as a potential strategy to fight SARS-CoV-2. Infection. Front Microbiol [Internet]. 2020;11:1388. Disponible en: https://dx.doi.org/10.3389%2Ffmicb.2020.01388
24. Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, Wu S, Liu W, Cui Q, Geng B, Zhang W, Weldon R, Auguste K, Yang L, Liu X, Chen L, Yang X, Zhu B, Cai J. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome [Internet]. 2017;5(1):14. Disponible en: https://doi.org/10.1186/s40168-016-0222-x
25. Tang W, Backhed F, Landmesser U, Hazen S. Intestinal Microbiota in Cardiovascular Health and Disease: JACC state-of-the-art review. J Am Coll Cardiol [Internet]. 2019;73(16):2089-105. Disponible en: https://doi.org/10.1016/j.jacc.2019.03.024
26. Serena C, Ceperuelo-Mallafré V, Keiran N, Queipo-Ortuño MI, Bernal R, Gómez-Huelgas R, Urpi-Sarda M, Sabater M, Pérez-Brocal V, Andrés-Lacueva C, Moya A, Tinahones FJ, Fernández-Real JM, Vendrell J, Fernández-Veledo S. Elevated circulating levels of succinate in human obesity are linked to specific gut microbiota. ISME J [Internet]. 2018;12:1642-57. Disponible en: https://doi.org/10.1038/s41396-018-0068-2
27. Tang W, Kitai T, Hazen S. Gut microbiota in cardiovascular health and disease. Circ Res [Internet]. 2017;120(7):1183-96. Disponible en: https://doi.org/10.1161/CIRCRESAHA.117.309715
28. Xu H, Wang X, Feng W, Liu Q, Zhou S, Liu Q, Cai L. The gut microbiota and its interactions with cardiovascular disease. Microbial Biotechnology [Internet]. 2020;13(3):637-56. Disponible en: https://doi.org/10.1111/1751-7915.13524
29. Jain V, Yuan J-M. Predictive symptoms and comorbidities for severe COVID-19 and intensive care unit admission: a systematic review and meta-analysis. Int J Public Health [Internet]. 2020;65:533-46. Disponible en: https://doi.org/10.1007/s00038-020-01390-7
30. Gold MS, Sehayek D, Gabrielli S, Zhang X, McCusker C, Ben-Shoshan M. COVID-19 and comorbidities: a systematic review and meta-analysis. Postgrad Med [Internet]. 2020;1-7. Disponible en: https://doi.org/10.1080/00325481.2020.1786964
31. Dhar D, Mohanty A. Gut microbiota and COVID-19-possible link and implications. Virus Res [Internet]. 2020;285:198018. Disponible en: https://doi.org/10.1016/j.virusres.2020.198018
32. Infusino F, Marazzato M, Mancone M, Fedele F, Mastroianni CM, Severino P, Ceccarelli G, Santinelli L, Cavarretta E, Marullo AGM, Miraldi F, Carnevale R, Nocella C, Biondi-Zoccai G, Pagnini C, Pugliese F, Frati G, d’Ettorre G. Diet supplementation probiotics, and nutraceuticals in SARS-CoV-2 Infection: A scoping review. Nutrients [Internet]. 2020;12(6):1718. Disponible en: https://doi.org/10.3390/nu12061718
33. Antunes A, Vinderola G, Xavier-Santos D, Sivieri K. Potential contribution of beneficial microbes to face the COVID-19pandemic. Food Res Int [Internet]. 2020;136:109577. Disponible en: https://doi.org/10.1016/j.foodres.2020.109577
34. Sundararaman A, Ray M, Ravindra PV, Halami PM. Role of probiotics to combat viral infections with emphasis on COVID-19. Appl Microbiol Biotechnol [Internet]. 2020;104,8089-104. Disponible en: https://doi.org/10.1007/s00253-020-10832-4
35. Mahooti M, Miri SM, Abdolalipour E, Ghaemi A. The immunomodulatory effects of probiotics on respiratory viral infections: a hint for COVID-19 treatment. Microb Pathog [Internet]. 2020;148:104452. Disponible en: https://doi.org/10.1016/j.micpath.2020.104452
36. Morais AHA, Passos TS, Maciel BLL, da Silva-Maia JK. Can probiotics and diet promote beneficial immune modulation and purine control in coronavirus infections? Nutrients [Internet]. 2020;12(6):1737. Disponible en: https://doi.org/10.3390/nu12061737
37. Schwendinger F, Pocecco E. Counteracting physical Inactivity during the COVID-19 pandemic: evidence-based recommendations for home-based exercise. Int J Environ Res Public Health [Internet]. 2020;17(11):3909. Disponible en: https://doi.org/10.3390/ijerph17113909
38. Organización Panamericana de la Salud. Joint statement on noncommunicable disease and COVID 19. Disponible en: https://www.paho.org/en/documents/joint-statement-noncommunicable-diseases-and-covid-19; 2020 [consultada 2020.10.01].

Published

2021-01-15

Issue

Section

Artículos