Programación metabólica fetal. Consideraciones generales para el equipo de salud

Autores/as

DOI:

https://doi.org/10.33936/qkrcs.v8i2.6701

Resumen

La programación metabólica fetal se refiere a los cambios duraderos en la estructura o función del organismo que ocurren durante períodos críticos de la vida, influenciados por factores ambientales y genéticos. Este fenómeno ha sido ampliamente documentado en investigaciones en animales y humanos, y se ha demostrado que puede ser transmitido a generaciones futuras mediante mecanismos epigenéticos que afectan la expresión génica sin modificar la secuencia del ADN. Se planteó el objetivo de describir la programación metabólica fetal de forma que su relevancia sea fácilmente comprendida por todo el equipo de salud. Se realizó una revisión narrativa de la literatura. La búsqueda de estudios abarcó las bases de datos ScienceDirect, SciELO y PubMed, enfocándose en trabajos publicados en los últimos cinco años. No obstante, se incluyeron también estudios más antiguos que fueron considerados fundamentales para el desarrollo del tema. Se encontró que la programación metabólica fetal, está influenciada por factores nutricionales y ambientales durante el embarazo, e impacta el desarrollo metabólico del feto y su predisposición a enfermedades crónicas. Estudios respaldan que estos cambios son heredables a través de mecanismos epigenéticos, afectando la salud en la vida adulta. Las intervenciones tempranas son esenciales. Lo que permite concluir que la programación metabólica fetal es un campo de estudio crucial para comprender las enfermedades crónicas no transmisibles, destacando el papel de factores genéticos, ambientales, maternos, fetales y placentarios en la salud futura del feto.

Descargas

La descarga de datos todavía no está disponible.

Citas

Barrera Reyes R, Fernández Carrocera L. Programación metabólica fetal. Perinatal Reprod Hum [Internet]. 2015 [cited 2024 Apr 15];29(3):99–105. Disponible en: https://www.sciencedirect.com/science/article/pii/S0187533715000345?ref=pdf_download&fr=RR-2&rr=8755a6cdb80d95cf

Ryznar R, Phibbs L, Van Winkle LJ. Epigenetic modifications at the center of the Barker hypothesis and their transgenerational implications. Int J Environ Res Public Health. 2021;18:1–12. [cited 2024 Apr 15]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8656758/pdf/ijerph-18-12728.pdf

García-Rizo C. Programación fetal metabólica en la salud mental. Rev Psiquiatr Infanto-Juv [Internet]. 2019 [cited 2024 Apr 15];36(4):3–5. Disponible en: https://www.aepnya.eu/index.php/revistaaepnya/article/view/326/270

Hernandez-Rojas PE, Caraballo-Mata AJ, Martinez H. Etapa fetal de la programación. Estrategias para un buen control preconcepcional y prenatal. Rev Obstet Ginecol Venez. 2022;82:228–41. [cited 2024 Apr 15]. Disponible en: https://revistasad.com/index.php/diabetes/article/view/67

Entringer S, Punder K, Buss C, Wadhwa PD. The fetal programming of telomere biology hypothesis: An update. Phil Trans R Soc B. 2018;373:1–15. [cited 2024 Apr 15]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5784074/pdf/rstb20170151.pdf

Hales CN, Barker DJP. Typer 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetología. 1992;35:595-601. [cited 2024 Apr 15]. Disponible en: https://link.springer.com/article/10.1007/BF00400248

Lazo de la Vega Monroy ML, Barbosa Sabanero G, Gómez Zapata HM. Orígenes de la salud y la enfermedad durante el desarrollo: ¿cómo y cuándo prevenir las enfermedades metabólicas? Ciencia UANL. 2021;108:20–5. [cited 2024 Apr 15]. Disponible en: https://cienciauanl.uanl.mx/ojs/index.php/revista/article/view/227/228

Casanello P, Krause BJ, Castro-Rodriguez JA, Uauy R. Programación fetal de enfermedades crónicas: conceptos actuales y epigenética. Rev Chil Pediatr. 2015;86(3):135–7. [cited 2024 Apr 15]. Disponible en: https://www.scielo.cl/pdf/rcp/v86n3/art01.pdf

Martínez-Leyva G, Hernández-Ugalde, Martín-Pastrana L. Epigenética y enfermedades crónicas no trasmisibles: un nuevo enfoque preventivo. Rev Med Electrón. 2023;45(2):322–34. [cited 2024 Apr 15]. Disponible en: http://scielo.sld.cu/pdf/rme/v45n2/1684-1824-rme-45-02-322.pdf

Petit de Molero N. Programación fetal y modificaciones epigenéticas relacionadas con el maltrato intrauterino. In: Colección Razetti Volumen XXVIII. Carlos Cabrera Lozada; 2023. [cited 2024 Apr 15]. p. 149–89. Disponible en: http://saber.ucv.ve/ojs/index.php/cora/article/view/26826/144814492703

Mejia-Montilla J, Reyna-Villasmil N, Reyna-Villasmil E. Fetal programming and epigenetic modifications caused by folate. Rev Peru Ginecol Obstet. 2020;66(1):41–6. [cited 2024 Apr 15]. Disponible en: http://www.scielo.org.pe/pdf/rgo/v66n1/2304-5132-rgo-66-01-41.pdf

Albuerne Canal AM. Alimentación materna y programación fetal. Npunto. 2019;2(11). [cited 2024 Apr 15]. Disponible en: https://www.npunto.es/revista/11/alimentacion-materna-y-programacion-fetal

Li Y, Pollock CA, Saad S. Aberrant DNA methylation mediates the transgenerational risk of metabolic and chronic disease due to maternal obesity and overnutrition. Genes (Basel). 2021;12(11). [cited 2024 Apr 15]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8624316/pdf/genes-12-01653.pdf

Vargas Aguilar VM, Beltrán Beltrán KM, Arroyo Álvarez K. Fisiopatología de la programación fetal y su repercusión en la salud futura. Ginecol Obstet Mex. 2023;91(8):588–99. [cited 2024 Apr 15]. Disponible en: https://www.scielo.org.mx/pdf/gom/v91n8/0300-9041-gom-91-08-588.pdf

Kappeler L. Role of adipose tissue microRNAs in the onset of metabolic diseases and implications in the context of the DOHaD. Cells. 2022;11(37):1–17. [cited 2024 Apr 15]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9739499/pdf/cells-11-03711.pdf

Herring CM, Bazer FW, Johnson GA, Wu G. Impacts of maternal dietary protein intake on fetal survival, growth, and development. Exp Biol Med. 2018;243:525–33. [cited 2024 Apr 15]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882021/pdf/10.1177_1535370218758275.pdf

Blasetti A, Quarta A, Guarino M, Cicolini I, Iannucci D, Giannini C, et al. Role of prenatal nutrition in the development of insulin resistance in children. Nutrients. 2023;15(87):1–12. [cited 2024 Apr 15]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824240/pdf/nutrients-15-00087.pdf

Bellver J, Mariani G. Impact of parental over- and underweight on the health of offspring. Fertil Steril. 2019;111(6):1054–64. [cited 2024 Apr 15]. Disponible en: https://www.fertstert.org/action/showPdf?pii=S0015-0282%2819%2930243-2

Maffeis C, Morandi A. Effect of maternal obesity on fetal growth and metabolic health of the offspring. Obes Facts. 2017;10:112–7. [cited 2024 Apr 15]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5644955/pdf/ofa-0010-0112.pdf

Shrestha N, Ezechukwu HC, Holland OJ, Hryciw DH. Developmental programming of peripheral diseases in offspring exposed to maternal obesity during pregnancy. Am J Physiol Regul Integr Comp Physiol. 2020;319:507–16. [cited 2024 Apr 15]. Disponible en: https://journals.physiology.org/doi/epdf/10.1152/ajpregu.00214.2020

Ormazabal V, Nair S, Carrión F, Mcintyre HD, Salomon C. The link between gestational diabetes and cardiovascular diseases: potential role of extracellular vesicles. Cardiovasc Diabetol. 2022;21(174):1–19. [cited 2024 Apr 15]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9441052/pdf/12933_2022_Article_1597.pdf

Tozour J, Hughes F, Carrier A, Vieau D, Delahaye F. Prenatal hyperglycemia exposure and cellular stress, a sugar-coated view of early programming of metabolic diseases. Biomolecules. 2020;10:1–17. [cited 2024 Apr 15]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7598660/pdf/biomolecules-10-01359.pdf

Mayorga-Aldaz C., Sunta-Ruiz M, Nevárez-Yugcha N. El estrés materno y su influencia en el desarrollo embrionario y fetal: una revisión de la literatura. Rev Ciencias Médicas. 2023;27:1–8. [cited 2024 Apr 15]. Disponible en: http://scielo.sld.cu/pdf/rpr/v27n6/1561-3194-rpr-27-06-e6217.pdf

Goldstein JM, Holsen L, Huang G, Hammond BD, James-Todd T, Cherkerzian S, et al. Prenatal stress-immune programming of sex differences in comorbidity of depression and obesity/metabolic syndrome. Server Research Group. 2016 [cited 2024 Apr 15]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5286728/pdf/DialoguesClinNeurosci-18-425.pdf

Brachetti E, Ruperti E, Irigoyen S, Brito F. Efectos del estrés materno intenso y prolongado durante el embarazo y su repercusión sobre el neurodesarrollo del feto. Rev Ecuatoriana de Neurologia. 2020;29(1):23–8. [cited 2024 Apr 15]. Disponible en: https://revecuatneurol.com/wp-content/uploads/2020/11/2631-2581-rneuro-26-02-00023.pdf

Cáceres R, Martínez-Aguayo J, Arancibia M, Sepúlveda E. Efectos neurobiológicos del estrés prenatal sobre el nuevo ser. Rev Chil Neuro-Psiquiat. 2017;55(2):103–13. [cited 2024 Apr 15]. Disponible en: https://www.redalyc.org/pdf/3315/331552284005.pdf

Lesseur C, Chen J. Adverse maternal metabolic intrauterine environment and placental epigenetics: implications for fetal metabolic programming. Curr Environ Health Rep. 2018;5(4):531–43. [cited 2024 Apr 15]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6599179/pdf/nihms-1524708.pdf

Aye ILMH, Aiken CE, Charnock-Jones DS, Smith GCS. Placental energy metabolism in health and disease—significance of development and implications for preeclampsia. Am J Obstet Gynecol. 2022;226:928–44. [cited 2024 Apr 15]. Disponible en: https://www.ajog.org/action/showPdf?pii=S0002-9378%2820%2931287-4

Zhou LY, Deng MQ, Zhang Q, Xiao XH. Early-life nutrition and metabolic disorders in later life: a new perspective on energy metabolism. Chin Med J (Engl). 2020;133(16):1961–70. [cited 2024 Apr 15]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7462214/pdf/cm9-133-1961.pdf

Ruiz Vázquez A, Rivero DV, Borrego Gutiérrez D. Programación metabólica fetal y epigenética: nuevo enfoque de las patologías crónicas no transmisibles. Ciencias Básicas Biomédicas. 2021;1–11. [cited 2024 Apr 15]. Disponible en: https://cibamanz2021.sld.cu/index.php/cibamanz/cibamanz2021/paper/viewFile/686/441

Harary D, Akinyemi A, Charron MJ, Fuloria M. Fetal growth and intrauterine epigenetic programming of obesity and cardiometabolic disease. Neoreviews. 2022;23(6):e363–72. [cited 2024 Apr 15]. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10100845/pdf/nihms-1883793.pdf

Uceda JE, Caravedo-Reyes L, Figueroa ML. Malnutrición materno-fetal: revisión de la bibliografía internacional y la urgencia de estudios, prevención e intervención en el Perú. Rev Med Hered. 2021;32(1):52–8. [cited 2024 Apr 15]. Disponible en: http://www.scielo.org.pe/pdf/rmh/v32n1/1729-214X-rmh-32-01-52.pdf

Descargas

Publicado

2025-01-07

Número

Sección

Medicina