Bioestabilización de excretas avícolas mediante microorganismos eficientes para el control de la contaminación ambiental


  • Ayda De La Cruz Balón Escuela Superior Politécnica Agropecuaria de Manabí “Manuel Félix López” - Ecuador
  • José Calderón Escuela Superior Politécnica Agropecuaria de Manabí “Manuel Félix López” - Ecuador
  • Ana María Aveiga Ortiz Escuela Superior Politécnica Agropecuaria de Manabí “Manuel Félix López” - Ecuador
  • Hugo Cobeña Escuela Superior Politécnica Agropecuaria de Manabí “Manuel Félix López” - Ecuador
  • Mailie Mendoza Escuela Superior Politécnica Agropecuaria de Manabí “Manuel Félix López” - Ecuador


Palabras clave:

Efficient microorganisms, poultry, wastes, air contamination, aerobiology, pathogens


In the city of Calceta (Manabí, Ecuador) three poultry farms have been identified for the production of eggs, which do not perform any treatment of the excreta of the laying birds, which leads to the generation of gases and bad odors that affect the population. The present work analyzes the efficiency in the reduction of air pollution when treating poultry excreta with different doses of efficient microorganisms (EMs). The experiment was designed in a unifactorial way with four treatments, based on 5 Kg of poultry excreta. Volumetric doses were added in the following order: 0,5; 1,0; and 1,5 liters of EMs; while, 1 liter of water was added as control. The monitoring parameters were pH, humidity, ammonium and the number of colonies of Bacillus spp., Lactobacillus spp. and yeasts. The biostabilization process was evaluated with two measurements, the first at 10 days and the second at 20 days of application of the EMs. The results show that at 20 days the pH values ​​reached ranges between 8,3 and 7,6; a decrease in ammonium concentrations from 3,14 mg/L to 0,60 mg/L was achieved; in the case of humidity, there was a decrease of approximately 50%, which affected the decrease of the microbial population of yeasts, Bacillus spp., and Lactobacillus spp. in more than 90%. In conclusion, the efficient microorganisms allow the reduction of more than 70% of bad odors represented by ammonia, generated by the accumulation of poultry excreta.

Index Terms— Efficient microorganisms, poultry, wastes, air contamination, aerobiology, pathogens


La descarga de datos todavía no está disponible.


[1] Ashayerizadeh, O., Dastar, B., Samadi, F., Khomeiri, M., Yamchi, A., & Zerehdaran, S. (2017). Study on the chemical and microbial composition and probiotic characteristics of dominant lactic acid bacteria in fermented poultry slaughterhouse waste. Waste Management, 65, 178–185.
[2] Baba, I., Banday, M., Khan, H., Khan, A., & Untoo, M. (2018). Economics of composting of poultry farm waste. Journal of Entomology and Zoology Studies, 4.
[3] Bolan, N. S., Szogi, A. A., Chuasavathi, T., Seshadri, B., Rothrock, M. J., & Panneerselvam, P. (2010). Uses and management of poultry litter. World’s Poultry Science Journal, 66(04), 673–698.
[4] Borowski, S., & Weatherley, L. (2013). Co-digestion of solid poultry manure with municipal sewage sludge. Bioresource Technology, 142, 345–352.
[5] Brandelli, A., Sala, L., & Kalil, S. J. (2015). Microbial enzymes for bioconversion of poultry waste into added-value products. Food Research International, 73, 3–12.
[6] Chinivasagam, H. N., Tran, T., Maddock, L., Gale, A., & Blackall, P. J. (2010). The aerobiology of the environment around mechanically ventilated broiler sheds. Journal of Applied Microbiology, 108(5), 1657–1667.
[7] Dourado, L., Siqueira, J., Sakomura, N., Pinheiro, S., Marcato, S., Fernandes, J., & Silva, J. (2010). Poultry feed metabolizable energy determination using total or partial excreta collection methods. Revista Brasileira de Ciência Avícola, 12(2), 129–132.
[8] Edwards, D. R., & Daniel, T. C. (1992). Environmental impacts of on-farm poultry waste disposal — A review. Bioresource Technology, 41(1), 9–33.
[9] Epstein, E. (2017). The science of composting. Routledge.
[10] Espinoza, L., Slaton, N., Mozaffari, M., & Daniels, M. (2018). The Use of Poultry Litter in Row Crops, 3.
[11] Ferreira, A., Kunh, S. S., Cremonez, P. A., Dieter, J., Teleken, J. G., Sampaio, S. C., & Kunh, P. D. (2018). Brazilian poultry activity waste: Destinations and energetic potential. Renewable and Sustainable Energy Reviews, 81, 3081–3089.
[12] Gallon, E., & Alcivar, W. (2012). Utilización del EM.1 (Microorganismo Eficaces) en el agua de beber, en pollos de engorde en fase de crecimiento y acabado en la ciudad de Babahoyo. Universidad Tecnológica de Babahoyo, Babahoyo. Recuperado de
[13] Guo, R., Li, G., Jiang, T., Schuchardt, F., Chen, T., Zhao, Y., & Shen, Y. (2012). Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresource Technology, 112, 171–178.
[14] Hayes, E. T., Curran, T. P., & Dodd, V. A. (2006). Odour and ammonia emissions from intensive poultry units in Ireland. Bioresource Technology, 97(7), 933–939.
[15] Heng, D. L. K. (2017). Bio Gas Plant Green Energy From Poultry Wastes In Singapore. Energy Procedia, 143, 436–441.
[16] Herrera, J., Rojas, J. F., & Bolaños, A. (2013). Diagnóstico preliminar de los niveles de emisión de amoníaco y sulfuro de hidrógeno en distintas modalidades de producción en granjas avícolas en Costa Rica. Revista de Ciencias Ambientales, 0(46).
[17] Higa, T. (2019). EM: A Holistic Technology For Humankind [TeraGanix]. Recuperado de
[18] Jayathilakan, K., Sultana, K., Radhakrishna, K., & Bawa, A. S. (2012). Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review. Journal of Food Science and Technology, 49(3), 278–293.
[19] Jordan, E., & Yancha, M. (2017). Plan integral de manejo, control y aprovechamiento de residuos sólidos orgánicos en la Compañía Productora Avícola Cajamarca Suárez Cavicente Cía. Ltda. Universidad Técnica de Ambato. Recuperado de
[20] Kelleher, B. ., Leahy, J. ., Henihan, A. ., O’Dwyer, T. ., Sutton, D., & Leahy, M. . (2002). Advances in poultry litter disposal technology – a review. Bioresource Technology, 83(1), 27–36.
[21] Mendez, R., Castillo, E., Briceño, O., Coronado, V., Pat, R., & Garrido, P. (2009). Estimación del potencial contaminante de las granjas porcinas y avícolas del estado de Yucatán. Ingeniería - Universidad Autónoma de Yucatán. Mérida, 13(2).
[22] Nahm, K. H., & Nahm, B. A. (2004). Poultry production and waste management. Seoul: Yu Han Publ.
[23] Pazmiño, R. (2018). Estimación de la huella de carbono en la granja avícola Siria del sitio Mocochal de Calceta. Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López.
[24] Pomboza-Tamaquiza, P., Guerrero-López, R., Guevara-Freire, D., & Rivera, V. (2018). Granjas avícolas y autosuficiencia de maíz y soya: caso Tungurahua-Ecuador. Estudios Sociales. Revista de Alimentación Contemporánea y Desarrollo Regional, 28(51).
[25] Roldan, L. (2013). Evaluaciones del uso de productos con extracto de Yucca schidigera para el control del amoníaco en explotaciones avícolas. ASOCIACIÓN COLOMBIANA DE MÉDICOS VETERINARIOS Y ZOOTECNISTAS ESPECIALISTAS EN AVICULTURA. Recuperado de
[26] Roumeliotis, T. S., Dixon, B. J., & Van Heyst, B. J. (2010). Characterization of gaseous pollutant and particulate matter emission rates from a commercial broiler operation part I: Observed trends in emissions. Atmospheric Environment, 44(31), 3770–3777.
[27] Sakar, S., Yetilmezsoy, K., & Kocak, E. (2009). Anaerobic digestion technology in poultry and livestock waste treatment — a literature review. Waste Management & Research, 27(1), 3–18.
[28] Salminen, E., & Rintala, J. (2002). Anaerobic digestion of organic solid poultry slaughterhouse waste – a review. Bioresource Technology, 83(1), 13–26.
[29] Sanchez-Monedero, M. A., Roig, A., Paredes, C., & Bernal, M. (2001). Nitrogen transformation during organic waste composting by the Rutgers system and its e€ects on pH, EC and maturity of the composting mixtures. Bioresource Technology, 8.
[30] Santos Dalólio, F., da Silva, J. N., Carneiro de Oliveira, A. C., Ferreira Tinôco, I. de F., Christiam Barbosa, R., Resende, M. de O., … Teixeira Coelho, S. (2017). Poultry litter as biomass energy: A review and future perspectives. Renewable and Sustainable Energy Reviews, 76, 941–949.
[31] Ullman, J. L., Mukhtar, S., Lacey, R. E., & Carey, J. B. (2004). A Review of Literature Concerning Odors, Ammonia, and Dust from Broiler Production Facilities: 4. Remedial Management Practices. The Journal of Applied Poultry Research, 13(3), 521–531.
[32] Velasco-Velasco, J. (2016). Buenas prácticas de manejo y emisiones de amoniaco en explotaciones avícolas. Agroproductividad, 9(8), 38–44.
[33] Viegas, C., Carolino, E., Malta-Vacas, J., Sabino, R., Viegas, S., & Veríssimo, C. (2012). Fungal Contamination of Poultry Litter: A Public Health Problem. Journal of Toxicology and Environmental Health, Part A, 75(22–23), 1341–1350.
[34] Vinueza, F. R. V. (2012). Diseño de un Plan de Manejo Ambiental para la Granja Avícola GACASA Ubicada en la Parroquia Valle Hermoso de la Provincia de Santo Domingo de Los Tsáchilas. Escuela Superior Politécnica de Chimborazo. Recuperado de
[35] Ware, G. W., Albert, L. A., & Gunther, F. A. (1999). Reviews of environmental contamination and toxicology: continuation of residue reviews. Volume 162. New York: Springer. Recuperado de
[36] Williams, C. M. (2018). Gestión de residuos de aves de corral en los países en desarrollo, 2.
[37] Yenigün, O., & Demirel, B. (2013). Ammonia inhibition in anaerobic digestion: A review. Process Biochemistry, 48(5–6), 901–911.