Evaluación energética de biocombustibles sólidos elaborados a partir de mezclas de biomasa lignocelulósica

Authors

  • Irene Carolina Beltrón Vinces Universidad Técnica de Manabí - Ecuador
  • Holger Eugenio Palacios Bravo Universidad Técnica de Manabí - Ecuador
  • Ernesto Rosero Delgado Universidad Técnica de Manabí - Ecuador

DOI:

https://doi.org/10.33936/riemat.v4i2.2192

Keywords:

ash, biomass, caloric power, fixed carbon, pellets.

Abstract

  the purpose of this work is to determine the energy capacity of solid biofuels (pellets) made from the mixture of lignocellulosic biomass. The residues used were peanut husk (Arachishypogaea) and corn stalk (Zea mays L.) present in different proportions in a total of five mixtures. The highest calorific value obtained (30534,89kJ / kg) was that of mixture 4 in proportions of peanut shell and corn stalk 25:75 respectively with an ash production of 9,49% and a fixed carbon content of 26,18% results that favor the efficiency of the pellet in the combustion process (Tmax = 787 ± 13°C) while the mixture 1 (100% peanut shell) obtained the lowest energy content (M1: 28191,06 kJ / kg) With the results obtained, it was determined that pellets made from mixed biomass have better properties than those manufactured by a single type of lignocellulosic residue.   Index Terms— ash, biomass, caloric power, fixed carbon, pellets.

Downloads

Download data is not yet available.

References

1. Wadhwa M, Bakshi MPS, Makkar HPS. FAO. [Online].; 2013. Available from: http://www.fao.org/3/i3273e/i3273e00.htm.
2. Nunes LJR, Matias JCO, Catalão JPS. A review on torrefied biomass pellets as a sustainable alternative to coal in power generation. Renewable and Sustainable Energy Reviews. 2014; 40: p. 153-160.
3. Ibrahim R, Li , Stegemann. Life cycle assessment of biomass densification systems. Biomass and Bioenergy. 2017; 107: p. 384-397.
4. Petre M, Pătrulescu F, Teodoresc R. Chapter 3 - Controlled Cultivation of Mushrooms on Winery and Vineyard Wastes. Mushroom Biotechnology. 2016;: p. 31-47.
5. OECD I. World Energy Outlook. International Energy Agency. 2010.
6. Fernández H, Oliver JV, Valiente M, Verdú S, Albert N. Desarrollo de pellets. Madera y Bosques. 2014; 20: p. 97-111.
7. Marcos F, Nuñez M. Biomasa Forestal: fuente energética. Energética XXI. 2006; 4(52): p. 80-85.
8. Rodríguez A. Estudios de valoración energética de combustibles forestales para la prevención de incendios forestales en la Sierra de la Primavera (Jalisco, México) mediante calorimetría de combustión y ensayos de inflamabilidad. Servizo de Publicacions e Intercambio Científico. 2009;: p. 128.
9. GEMCO ENERGY. What Is The Difference Between Biomass Pellets & Briquettes? [Online].; 2019 [cited 2019 08 12. Available from: http://www.gemco-energy.com/biomass-pellets-and-briquettes.html.
10. Agar DA. A comparative economic analysis of torrefied pellet production based on state-of-the-art pellets. Biomass and Bioenergy. 2017 Febrero; 97: p. 155-161.
11. Alakangas E, Virkkunen. Biomass fuel supply chains for solid biofuels. Finland:; 2007.
12. Abolins J, Gravitis J. Energy from biomass for conversion of biomass. Latvian journal of physics and technical sciences. 2009; 46(5): p. 16-23.
13. AOAC. Association of Official Analytical Chemists International Official Methods of Analysis. 16th ed. Arlington: AOAC; 1997.
14. Platace R, Adamovics , Gulbe I. Evaluation of factors influencing calorific value of reed canary grass spring and autumn yield. Engineering for rural development. 2013;: p. 521-525.
15. Adegoke OA, Fuwape JA, Fabiyi JS. Combustion properties of some tropical wood species and their pyrolytic products characterization. Energy and Power. 2014; 4(3): p. 54-57.
16. Seijas S, Seijas P, Seijas N, Chávez A, Salgado L, Alva. M. Optimización del proceso de densificación de desechos lignocelulósicos para la conformación de pellets energéticos. Ciencia para el desarrollo. 2014; 17(1): p. 73-80.
17. Lehtikangas P. Storage effects on pelletised sawdust, logging residues and bark. Biomass and Bioenergy. 2000;: p. 19:287-93.
18. Sukarta N, Ketut D, Sri Ayuni NP. Proximate Analysis and Calorific Value of Pellets in Biosolid Combined with Wood Waste Biomass. Journal of Ecological Engineering. 2018; 19: p. 185-190.
19. Alakangas E. Characteristics of Fuels Used in Finland. Jyvaskyla: VTT Energy. 2000;: p. 172 pp. +app. 17 pp. (VTT Research Notes 2045) (In Finnish).
20. Wibowo S, Lestari N. Effect of Peanut Shell Torrefaction on Qualities of The Produced Bio-Pellet. Reaktor. 2018; 18(4): p. 183-193.
21. Lubis A, Romli M, Yani M, Pari G. Mutu biopelet dari bagas , kulit kacang tanah dan pod kakao. Jurnal Teknologi Industri Pertanian. 2016; 26(1): p. 77-86.
22. El-Sayed SA, Khairy M. Preparation and Characterization of Fuel Pellets from Corn Cob and Wheat Dust with Binder. Iranica Journal of Energy & Environment. 2017; 8(1): p. 71-87.
23. Lukmandaru G, Hidayah RN. Studi mutu kayu jati di hutan rakyat Gunungkidul VI. Kadar zat anorganik dan Keasaman. Jurnal Ilmu Kehutanan. 2017; 10(2): p. 63-75.
24. Mata J, Pérez JA, Díaz MJ, Serrano A, Núñez N, López FJ. Statistical evaluation of quality parameters of olive stone to predict its heating value. Fuel. 2013; 113: p. 750-756.
25. Sulistyanto A. Karakteristik pembakaran biobriket campuran batubara dan sabut kelapa. Media Mesin. 2006; 7(2): p. 77-84.
26. Onochie UP, Obanor AI, Aliu SA, Ighodaro OO. Proximate and ultimate analysis of fuel pellets from oil palm residues. Nigerian Journal of Technology (NIJOTECH). 2017; 36(3): p. 987-990.
27. Zhang T, Qiu L, Wang Y, Zhang C, Kang K. Comparison of Bio-Oil and Waste Cooking Oil as Binders during the Codensification of Biomass: Analysis of the Pellet Quality. Bioenergy Research. 2019.
28. Speight JG. Assessing fuels for gasification. Gasification for Synthetic Fuel Production. 2015;: p. 175-198.
29. Febrero L, Granada E, Regueiro A, Míguez J. Influence of Combustion Parameters on Fouling Composition after Wood Pellet Burning in a Lab-Scale Low-Power Boiler. Energies. 2015; 8(9): p. 9794-9816.
30. Arranz JI, Miranda MT, Montero I, Sepúlveda FJ, Rojas CV. Characterization and combustion behaviour of commercial and experimental wood pellets in South West Europe. Fuel. 2015; 142: p. 199-207.
31. García R, Pizarro C, Lavín AG, Bueno J. Biomass sources for thermal conversion.Techno-economical overview.. Fuel. 2017; 195: p. 182–189.
32. González JF, González-Garcı́a CM, Ramiro A, González J, Sabio E, Gañan J, et al. Combustion optimisation of biomass residue pellets for domestic heating with a mural boiler. Biomass and Bioenergy. 2004; 27(2): p. 145–154.
33. Broek Hvd. Wood pellets: output and efficiency. [Online].; 2019 [cited 2019 08 12. Available from: http://pellets-wood.com/news-wood-pellets-output-and-efficiency-1.html.
34. Guo F, Zhong Z. Optimization of the co-combustion of coal and composite biomass pellets. Journal of Cleaner Production. 2018; 185: p. 399–407.
35. Rivadeneira D, Heredia M, Ramírez V, Narváez R, da Cruz Tarelho L, Amador de Matos A. Co-combustión de pellets de Jatropha curcas (Piñón) y astillas de madera en un quemador horizontal prototipo. ENERLAC. Revista de energía de Latinoamérica y el Caribe. 2018 diciembre; 2(2): p. 8-23.

Published

2020-01-09