Exergoeconomics and its implications with thermodynamics
Review Article
DOI:
https://doi.org/10.33936/riemat.v9i1.6791Keywords:
Exergoeconomics; Thermodynamics; Energy Efficiency; Energy Sustainability.Abstract
Exergoeconomics is presented as a multidisciplinary approach that integrates the principles of thermodynamics with economic tools to evaluate and optimize the efficiency and sustainability of energy systems. This study conducts a systematic review of academic literature to explore the relationship between exergoeconomics and thermodynamics, and their practical applications in energy management. The results reveal a solid integratiof thermodynamic principles in exergy analysis, diverse applications in industrial sectors and energy systems, and highlight both the opportunities and challenges in the implementatiof exergoeconomics. Despite the complexity of calculations and the lack of precise data, the relevance of exergoeconomics for energy sustainability is undeniable. Future research directions are identified to improve analysis methodologies and expand the applicatiof exergoeconomics in emerging fields. This work emphasizes the importance of interdisciplinary collaboration and a holistic approach to address current and future energy challenges.
Downloads
References
Araújo, M. R., Monteiro, A. S., Teixeira, E. S., Baez, R. N., y Costa, B. P. (2023, November). Metodologia de Gestão de Contratos de Energia: Estudo de Caso em uma Empresa de Saneamento. In 2023 15th IEEE International Conference on Industry Applications (INDUSCON) . 696-701. DOI : 10.1109/INDUSCON58041.2023.10374619
Álvarez Benítez, O. L., Parrales Bahena, A., Parrales Bahena, A., Huicochea Rodríguez, A., y Hernández Pérez, J. A. (2022). Optimización de sistemas mediante análisis exergonómico. Inventio, la génesis de la cultura universitaria en Morelos, 17(43), 1-10. https://doi.org/10.30973/inventio/2021.17.43/
Bejan, A., Tsatsaronis, G., y Moran, M. (2016). Thermal Design and Optimization. John Wiley y Sons.
Caliskan, H., Dincer, I., y Agelin-Chaab, M. (2020). Thermodynamic and exergoeconomic analyses of a novel integrated energy system for sustainable buildings. Energy Conversion and Management, 211, 112765. https://doi.org/10.1016/j.enconman.2020.112765
Dincer, I., y Rosen, M. A. (2013). Exergy: Energy, Environment, and Sustainable Development. Elsevier. https://acortar.link/Xb1rnL
Frangopoulos, C. A. (1994). Applicatiof the thermoeconomic functional approach to the CGAM problem. Energy, 19, 323-342. https://doi.org/10.1016/0360-5442(94)90114-7
Gago, L., Schpetter, N., Mandrile, A., y Stark, N. (2022). Exergo Economía: Análisis exergético para el estudio de energías renovables y el ambiente. E-ISSN 2683-9237
Golberg, A. (2015). Environmental exergonomics for sustainable design and analysis of energy systems. Energy, 88, 314-321. https://doi.org/10.1016/j.energy.2015.05.053
IEEE Standards Association. (2017). IEEE Standard for System, Software, and Hardware Verification and Validation. IEEE Std 1012-2017. https://doi.org/10.1109/IEEESTD.2017.7929195
IEEE Standards Association. (2018). IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces. IEEE Std 1547-2018. https://doi.org/10.1109/IEEESTD.2018.8332112
Martinez, E., y Leal Filho, W. (2021). The Role of Sustainable Energy in Achieving the Sustainable Development Goals: The SDG7 Nexus. Sustainability, 13(7), 3874. https://doi.org/10.3390/su13073874
Moran, M. J., Shapiro, H. N., Boettner, D. D., y Bailey, M. B. (2017). Fundamentals of Engineering Thermodynamics (9th ed.). John Wiley y Sons.
Moher, D., Liberati, A., Tetzlaff, J., y Altman, D. G. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med, 6 (7), e1000097. https://doi.org/10.1371/journal.pmed.1000097
Monroy, E., Rodríguez, K., y Bastidas, M. (2016). Evaluación exergética para tecnologías aplicadas a fuentes no convencionales de energía. https://doi.org/10.15665/rp.v14i1.645
Mora, I. E. H., Leyte, R. L., Blancas, A. E. B., Arenas, T. L., Méndez, H. D. L., y PEREYRA, M. S. (2019). Análisis exergoeconómico de un ciclo de refrigeración por compresión de vapor incluyendo el costo de imputación por la formación del residuo. Dyna, 86(208), 336-345. https://revistas.unal.edu.co/index.php/dyna/article/view/73299
Reistad, G., y Bakken, B. (2021). Exploring the role of ICT in energy systems: A comprehensive review and outlook. Renewable and Sustainable Energy Reviews, 145, 111080. https://doi.org/10.1016/j.rser.2021.111080
Rosen, M. A., y Koohi-Fayegh, S. (2016). Exergy: Energy, Environment, and Sustainable Development (2nd ed.). Elsevier.
Sánchez, A. (2020). Análisis de la productividad en la industria alimenticia con base en una metodología desarrollada y fundamentada en la exergoeconomía y la exergía social. Recuperado de https://unal.edu.co/19409834.2020.pdf.
Tsatsaronis, G., y Pisa, G. J. (1994). Exergoeconomic evaluation and optimizatiof energy systems. Application to the CGAM problem. Energy, 19, 287-321. https://doi.org/10.1016/0360-5442(94)90113-9
Valero, A., Lozano, M. A., Serra, L., Tsatsaronis, G., Pisa, C., Frangopoulos, C. A., y Von Spakovsky, M. R. (1994). CGAM problem: Definition and conventional solution. Energy, 19, 279-286. https://doi.org/10.1016/0360-5442(94)90112-0
Velasco Callau, A., Martínez Gracia, T., y Gómez Martín, T. (2011). Termodinámica aplicada a instalaciones térmicas. Termodinámica Técnica II. Termodinámica aplicada a instalaciones térmicas: 2011.
Wang, J., He, Y., y Yang, Y. (2015). Advances in exergy analysis and energy efficiency improvement of industrial processes. Applied Energy, 151, 99-113. https://doi.org/10.1016/j.apenergy.2015.04.070
Zhang, X., y Xu, X. (2018). Exergoeconomic analysis of renewable energy systems: An updated review. Renewable and Sustainable Energy Reviews, 81, 1823-1835. https://doi.org/10.1016/j.rser.2017.05.248
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.