Multitemporal land use classification using Landsat images in the Quinindé River basin
Original Article
DOI:
https://doi.org/10.33936/riemat.v9i2.6793Keywords:
multi-temporal classification; land use; land cover; runoff; sediments.Abstract
This mixed research study aimed to carry out a multi-temporal Landsat image classification of land cover/use in the Quinindé River Basin, regarding the importance of having updated data on the use of land in a given area for water resource management. Hence, this descriptive research study was conducted from January to November 2022. Some Landsat satellite images from 1998, 2015 and 2019 were used; the minimum distance method was used, as well as the ISODATA method using QGIS software, which involved an analysis through supervised and unsupervised classification. The findings reveal 15.66% cloud coverage; therefore, the year 2015 has the highest percentage covered by clouds. Pixels “without information” (black legend) have an average of 4.29%; the body of water has 0.15% and agricultural land (cultivated land) has an average of 25.78%; the coverage of conservation and protection (less disturbed humid forest) has an average of 21.24%; the coverage of conservation and production (moderately disturbed herbaceous vegetation) has an average of 32.65%; and the populated area has an average of 0.23%. In conclusion, human activities affect uses of soil in this basin, and they may cause damage such as an increase in soil erosion due to surface runoff, transporting this way sediment entrainment. Developing comprehensive water resources planning activities for this basin is recommended.
Downloads
References
Aguilar, H., Mora, R., & Vargas, C. (2014). Metodología para la corrección atmosférica de imágenes Aster, Rapideye, Spot 2 y Landsat 8 con el módulo Flaash del software ENVI. Revista Geográfica de América Central, 53, 39–59. http://dx.doi.org/10.15359/rgac.%5Cnhttp://www.revistas.una.ac.cr/index.php/geografica/article/view/6609/6743
Aguirre, P. (2018). Análisis multitemporal entre los años 2000 y 2017 de las coberturas de la tierra y los principales cuerpos de agua en el departamento de atlántico empleando imágenes satelitales landsat. [Tesis de postgrado, Universidad Militar Nueva Granada]. Bogotá, Colombia. https://repository.unimilitar.edu.co/bitstream/handle/10654/17630/AguirreMartinezPaulaAndrea2018.pdf?sequence=3&isAllowed=y
Arango, M., Branch, J y Botero, B. (2005). Clasificación no supervisada de coberturas vegetales sobre imágenes digitales de sensores remotos: “landsat – etm+”. Rev.Fac. Nal.Agr.Medellín, 58 (1), 2611-2634. http://www.scielo.org.co/pdf/rfnam/v58n1/a04v58n1.pdf
Argañaraz, J. P., & Entraigas, I. (2011). Análisis comparativo entre las máquinas de vectores soporte y el clasificador de máxima probabilidad para la discriminación de cubiertas de suelo. Revista de Teledetección, 36 (Mlc), 26–39. https://acortar.link/zyoTs5
Changjiang Institute of Survey, Planning, Design and Research CISPDR (2016). Plan Hidráulico Regional de Demarcación Hidrográfica Esmeraldas. Esmeraldas: Changjiang Institute of Survey Planning Design and Research.
Cabrera, G. (2019). Dinámica del cambio de uso del suelo de la cuenca del rio Tomebamba entre los años 2001-2015 y su proyección al año 2030. Tesis de pregrado, Universidad del Azuay. Cuenca, Ecuador. https://dspace.uazuay.edu.ec/bitstream/datos/9566/5/15200.pdf
Camacho-Sanabria, R., Camacho-Sanabria, J. M., Balderas-Plata, M. Á., & Sánchez-López, M. (2017). Cambios de cobertura y uso de suelo: Estudio de caso en progreso hidalgo, estado de méxico. Madera Bosques, 23(3), 39–60. https://doi.org/10.21829/myb.2017.2331516
Domínguez, R., & León, M. (2019). Recursos naturales, medio ambiente y sostenibilidad. Santiago: Comisión Económica para América Latina y el Caribe (CEPAL).
FAO. (2015). Evaluación de los recurso forestales mundiales 2015. Organización de las Naciones Unidas para la Alimentación y la Agricultura. http://www.fao.org/3/a-i4808s.pdf:
Fureder, P. (2010). Topographic Correction of Satellite images for improved LULC classification in Alpine Areas. Grazer Schriften Der Geographie Und Raumforschung, 45, 187–194. http://uni-graz.at/geowww/hmrsc1/pdf/10/21_HMRSC-X_Fuereder.pdf
Henriquez, D. L. (2012). Escenarios futuros de uso de suelo para el análisis del efecto del cambio global en los recursos hídricos aplicado al acuífero de la mancha oriental. Universidad Politécnica de Valencia. https://riunet.upv.es/handle/10251/15479
Jorquera, E. et al. (2012). Revisión del estado del arte en la modelación hidrológica distribuida e integrada. 1° Encuentro de Investigadores En Formación En Recursos Hídricos, October 2014, 18.
Kantakumar, L. N., & Neelamsetti, P. (2015). Multi-temporal land use classification using hybridapproach. The Egyptian Journal of Remote Sensing and SpaceSciences, 18, 289-295. doi:10.1016/j.ejrs.2015.09.003
Khatami, R., Mountrakis, G., & Stehman, S. (2016). A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sensing of Environmen, 177, pp 89–100. https://doi.org/10.1016/j.rse2016.02.028
Ministerio del Ambiente del Ecuador MAE. (2012). Línea Base de deforestación del Ecuador Continental. Quito-Ecuador: Ministerio del Ambiente del Ecuador.
Mendoza, L. H., Chavarría, J., & Giler, O. A. (2021). Evaluación de cambios en uso y cobertura de la tierra a escala de cuenca hidrográfica del río Chone. Revista Dilemas Contemporáneos: Educación, Política y Valores, Vol 8 (19) . https://www.scielo.org.mx/scielo.php?pid=S2007-78902021000400019&script=sci_arttext
Oñate-Valdivieso, F., & Bosque Sendra, J. (2010). Application of GIS and remote sensing techniques in generation of land use scenarios for hydrological modeling. Journal of Hydrology, 395(3–4), 256–263. https://doi.org/10.1016/j.jhydrol.2010.10.033
Pérez, L. R., Cabrera, E. E., Hinostroza, G. M., & Manzaba, C. J. (2018). Climatological Study Régimen de riego de cultivos en Manabí-Ecuador: estudio climatológico. The Irrigation Regime for Crops in Manabí, Ecuador, 27(1), 5–12. https://www.redalyc.org/journal/932/93261708006/93261708006.pdf
Prieto, A. J., Villarreal, G. F., Matinez, S. M., Manjarrez, C., Santellano, E. E., & Pinedo, A. A. (2018). Atmospheric and Radiometric Correction Algorithms for the Multitemporal Assessment of Grasslands Productivity. Revista remote sensing, pp 2-23. https://www.mdpi.com/2072-4292/10/2/219
Prieto-Amparan, J. A., Villarreal-Guerrero, F., Martinez-Salvador, M., Manjarrez-Domínguez, C., Santellano-Estrada, E., & Pinedo-Alvarez, A. (2018). Atmospheric and radiometric correction algorithms for the multitemporal assessment of grasslands productivity. Remote Sensing, 10(2). https://doi.org/10.3390/rs10020219
Palazón Tabuenca, L. (2016). Spatio-temporal dynamic of soil erosion and sediment supply in a Pyrenean catchment: modelling erosion and fingerprinting sediment apportionments.. https://digital.csic.es/handle/10261/131848
Turner, W. (2015). Free and open-access satellite data are key to biodiversity conservation. 182, pp. 173–176: Biological Conservation.
Valdivieso, O., & Bosque, S. J. (2010). Application of GIS and remote sensing techniques in generation of land use scenarios for hydrological modeling. Journal of Hydrology, 395, pp. 256–263. https://www.sciencedirect.com/science/article/pii/S0022169410006566
Vuolo, F., Mattiuzzi, M., & Atzberger, C. (2015). Comparison of the Landsat Surface Reflectance Climate Data Record (CDR) and manually atmospherically corrected data in a semi-arid European study area. International Journal of Applied Earth Observation and Geoinformation, 42: pp 1-10. https://www.sciencedirect.com/science/article/pii/S0303243415001129
Young, N. E., Anderson, R. S., Chignell, S. M., Vorster, A. G., Lawrence, R., & Evangelista, P. H. (2017). A survival guide to Landsat preprocessing. Ecology, 98(4), 920–932. https://doi.org/10.1002/ecy.1730
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.