Analysis of HVDC power transmission applications and future considerations: the case of Ecuador.

Review Article

Authors

DOI:

https://doi.org/10.33936/riemat.v9i2.6956

Keywords:

Direct current, renewable integration, SNI, electricity transmission

Abstract

This article clearly addresses an analysis of the applications and future considerations of direct current power transmission (HVDC) in Ecuador, and in the global context, thanks to the fact that this technology brings with it some technical and economic advantages that benefit the operating company in the transmission of electricity, and the electrical system as such, that is why, For this reason, an in-depth review of the state of the art of empirical, theoretical and analytical character was carried out on the current situation of the Ecuadorian electrical system, the advantages and disadvantages of HVDC systems versus high voltage alternating current (HVAC), the technical challenges, future considerations in the context of Ecuador, and the technological innovations in the transmission of direct current electricity worldwide. The methodology used responds to the objectives set through a systematic analysis, clarifying the feasibility and applications of HVDC in Ecuador, therefore, it was determined that there is no transmission network of this type, nor planned projects, however, it highlights the viability of this technology when combined with the renewable energy matrix, the connection with other systems at different operating frequencies, and as support for the stability of the electrical system through energy storage in batteries, being HVDC a technology with many future applications in Ecuador

Downloads

Download data is not yet available.

References

López Cortés, J. F. (2017). Control predictivo en convertidores de corriente multi-nivel para aplicaciones HVDC. Url: https://repositorio.utp.edu.co/server/api/core/bitstreams/959e844d-e5ca-4ba3-8d1f-6881a61765df/content

Alassi, A., Bañales, S., Ellabban, O., Adam, G., & MacIver, C. (2019). HVDC transmission: Technology review, market trends and future outlook. Renewable and Sustainable Energy Reviews, 112, 530-554. Url: https://www.sciencedirect.com/science/article/abs/pii/S1364032119302837

Landi Placencia, A. X., & Macancela Allaico, K. I. (2023). Modelación y simulación de un sistema de transmisión eléctrica de alta tensión con corriente continua (HVDC) mediante ATPDraw (Bachelor's thesis). Url: https://dspace.ups.edu.ec/handle/123456789/24463

Han, M., & Gole, A. (Eds.). (2020). Modeling and simulation of HVDC transmission. Institution of Engineering and Technology.Url: https://digital-library.theiet.org/content/books/po/pbpo116e

MERNNR. (2018). Plan Maestro de Electricidad 2018-2025. Url: https://www.recursosyenergia.gob.ec/plan-maestro-de-electricidad/

Guamán Caiza, G. D. (2019). Análisis comparativo de las alternativas de interconexión Ecuador–Perú usando sistemas de transmisión en corriente alterna y corriente directa (Bachelor's thesis, Quito, 2019.). Url: http://bibdigital.epn.edu.ec/handle/15000/20291

Rodríguez Ramiro, F. J. (2011). Comparativa convertidores HVDC-VSC. Grupo Tecnología Electrónica Universidad de SEVILLA, Sevilla. Url: https://n9.cl/jl1o1

Trintis, I., Munk-Nielsen, S., & Teodorescu, R. (2011, November). A new modular multilevel converter with integrated energy storage. In IECON 2011-37th Annual Conference of the IEEE Industrial Electronics Society (pp. 1075-1080). IEEE. doi: https://doi.org/10.1109/IECON.2011.6119457

MEER. (2017). Plan Nacional de Eficiencia Energética 2016-2035. Url: https://n9.cl/u1v0l

Rosés, R. E., Giménez, M. D. C., & Palacios, S. (2022). Beneficios de la Transmisión de Energía Eléctrica en Corriente Continua en Sistemas con Alta Penetración de Energía Renovable. In 2022 IEEE Biennial Congress of Argentina (ARGENCON) (pp. 1-7). IEEE. doi: https://doi.org/10.1109/ARGENCON55245.2022.9940086

Perez, M. A., Bernet, S., Rodriguez, J., Kouro, S., & Lizana, R. (2014). Circuit topologies, modeling, control schemes, and applications of modular multilevel converters. IEEE transactions on power electronics, 30(1), 4-17. doi: https://doi.org/10.1109/TPEL.2014.2310127

Garcia Aguilar, C. (2020). Descripción y estudio de los enlaces HVDC en los sistemas eléctricos (Bachelor's thesis, Universitat Politècnica de Catalunya). Url: https://upcommons.upc.edu/bitstream/handle/2117/185216/tfg-cristina-garcia.pdf

Jiménez Bahamón, L. (2016). Impacto de la transmisión HVDC en la estabilidad transitoria del sistema de potencia. Url: http://hdl.handle.net/2117/185216

Serrano-Gónzalez, J., Riquelme-Santos, J., & Arcos-Vargas, A. (2022). Transporte de energía en HVDC. El resurgir tecnológico de la corriente continua. DYNA Publishing, 97(3), 226-228. Url: http://184.168.116.25/index.php/DYNA/article/view/891

Khamphakdi, P., Sekiguchi, K., Hagiwara, M., & Akagi, H. (2013, June). Design and experiment of a back-to-back (BTB) system using modular multilevel cascade converters for power distribution systems. In 2013 IEEE ECCE Asia Downunder (pp. 311-317). IEEE. doi: https://doi.org/10.1109/ECCE-Asia.2013.6579114

Ayo, A., & Suvire, G. (2022, September). Planning for Electric Power Exchange with HVDC Links: Concepts and New Approaches. In 2022 IEEE Biennial Congress of Argentina (ARGENCON) (pp. 1-6). IEEE. Url: https://doi.org/10.1109/ARGENCON55245.2022.9939918

Rosero, R. (2020). Una Revisión Acerca de Tecnologías y Modelación de Enlaces HVDC para Estudios Eléctricos. Innovation & Development in Engineering and Applied Sciences, 2(1), 19-19. Url: http://201.159.222.149/index.php/ideas/article/view/363

Liu, Y., y Chen, Z. (2011). Análisis de estabilidad de voltaje transitorio y mejora de una red con diferentes sistemas HVDC. En la reunión general de la IEEE Power and Energy Society de 2011 (pp. 1-8). IEEE. doi: https://doi.org/10.1109/PES.2011.6039182

Lüth, T., Merlin, M. M. C., Green, T. C., Barker, C. D., Hassan, F., Critchley, R. W., ... & Dyke, K. (2012). Performance of a DC/AC/DC VSC system to interconnect HVDC systems. In 10th IET International Conference on AC and DC Power Transmission (ACDC 2012) (pp. 1-6). IET. Doi: https://doi.org/10.1049/cp.2012.1971

Anaya-Ruiz, G. A., Robles, D. R., Caballero, L. E. U., & Moreno-Goytia, E. L. (2023). Design and prototyping of transformerless DC-DC converter with high voltage ratio for MVDC applications. IEEE Latin America Transactions, 21(1), 62-70. doi: https://doi.org/10.1109/TLA.2023.10015127

Baruschka, L., & Mertens, A. (2011). Comparison of cascaded H-bridge and modular multilevel converters for BESS application. In 2011 IEEE Energy Conversion Congress and Exposition (pp. 909-916). IEEE. doi: https://doi.org/10.1109/ECCE.2011.6063868

MEM. (2024). Ministerio de Energía y Minas – Planificación Estratégica. Url: https://www.recursosyenergia.gob.ec/planificacion-estrategica-2/

Asociación de Generadores de Chile. (2021). Reporte Anual 2021. Url: https://generadoras.cl/documentos/reportes-anuales/reporte-anual-2021

Knaak, H. J. (2011). Modular multilevel converters and HVDC/FACTS: A success story. In Proceedings of the 2011 14th European conference on power electronics and applications (pp. 1-6). IEEE. Url: https://ieeexplore.ieee.org/abstract/document/6020674/citations#citations

Haileselassie, TM y Uhlen, K. (2013). Seguridad del sistema eléctrico en una red HVDC en malla del Mar del Norte. Actas del IEEE, 101 (4), 978-990. doi: https://doi.org/10.1109/JPROC.2013.2241375

Hong, R., Bing, L., Li, X., Zongyuan, C. y Li, L. (2008). Desarrollo de tecnología de transmisión UHVDC de ±800 kV en China. En la Conferencia internacional de 2008 sobre ingeniería y aplicación de alto voltaje (pp. 1-7). IEEE. doi: https://doi.org/10.1109/ICHVE.2008.4773859

Published

2024-12-12