Circular Economy and 3D Printing: Biomaterials in Industrial Sustainability
Review Article
DOI:
https://doi.org/10.33936/riemat.v10i1.7680Keywords:
circular economy, waste, environmental impact, additive manufacturing, sustainable materialsAbstract
3D printing is a set of manufacturing techniques that are being used in the manufacture of various products. The objective of this research is to identify how these additive manufacturing techniques can offer advantages over traditional manufacturing techniques for the use of biomaterials, by-products, and waste, allowing for a reduction in costs and environmental pollution in the industrial sector. To carry out this study, a systematic literature review was conducted using the desk research technique, considering studies on the circular economy and biomaterials used in 3D printing. Among the results found, it was evident that there is a wide range of possibilities for the use of materials: natural, composite, and synthetic, which come from recycling, for use in different 3D printing techniques. Their adoption would imply slower consumption of raw materials, reduced costs, and less pollution. These new production schemes can guide the industrial sector toward the adoption of circular economy models and sustainable development.
Downloads
References
Al-Oqla, F. (2023). Biomaterial Hierarchy Selection Framework Under Uncertainty for More Reliable Sustainable Green Products. JOM, 1-12. https://doi.org/10.1007/s11837-023-05797-4.
Álvarez Vega, F. (2018). Caracterización de las propiedades físicas y mecánicas del bambú Bambusa vulgaris para uso estructural en Colombia. Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/76733
Blanco, E., Fajardo, J., Carrasquero, E., Urbina, C., & León, J. B. (2020). Estudio de las propiedades a tensión de un material biocompuesto reforzado con haces de fibras cortas de bambú. Revista UIS Ingenierías, 19(3), 163-176. https://www.redalyc.org/journal/5537/553768212019/553768212019.pdf
Barve, S., & Pesode, P. (2023). Additive manufacturing of metallic biomaterials: sustainability aspect, opportunity, and challenges. Journal of Industrial and Production Engineering, 40, 464 - 505. https://doi.org/10.1080/21681015.2023.2229341.
Cantó, A. L. (2024). Revalorización de subproductos procedentes de la semilla del cáñamo (Cannabis sativa) para la obtención de biomateriales respetuosos con el medio ambiente (Doctoral dissertation, Universitat Politècnica de València). https://dialnet.unirioja.es/servlet/tesis?codigo=372250
Caisa Yucailla, E. D., Padilla Martínez, M. P. ., & Ríos Lara, G. F. . (2020). El reciclaje de madera una herramienta para emprender y cuidar el planeta. INNOVA Research Journal, 5(1), 150–165. https://doi.org/10.33890/innova.v5.n1.2020.1038
Christoph, R., Muñoz, R., & Hernández, Ángel. (2017). Manufactura Aditiva. Realidad Y Reflexión, 43, 97–109. https://doi.org/10.5377/ryr.v43i0.3552
Cerón Pabón, J y Eraso Quintero, M. (2016). Estudio de factibilidad para la creación de una empresa para la fabricación de monturas para gafas, a partir del reciclado de materiales plásticos. Pereira : Universidad Tecnológica de Pereira. Disponible en: https://hdl.handle.net/11059/7509
Chen, Q., Domigan, L., Kaur, M., Glasson, J., & Agnieray, H. (2021). Recent developments in sustainably sourced protein-based biomaterials. Biochemical Society Transactions, 49, 953 - 964. https://doi.org/10.1042/BST20200896.
Depuydt, D. ,Ballthazar, M., Hendrickx, K., Six, W. , Ferraris, E., Desplentere F. y Van Vuure W. A. (2019.). «Production and characterization of bamboo and flax fiber reinforced polylactic acid filaments for fused deposition modeling (FDM).,» Polymer Composites, vol. 40(5), pp. 1951-1963.https://articles.researchsolutions.com/production-and-characterization-of-bamboo-and-flax-fiber-reinforced-polylactic-acid-filaments-for-fused-deposition-modeling-fdm/doi/10.1002/pc.24971.
Fratini F, Cilia G, Turchi B, Felicioli A. (2016). Beeswax: A minireview of its antimicrobial activity and its application in medicine. Asian Pac J Trop Med. Sep;9(9):839-843. doi: 10.1016/j.apjtm.2016.07.003.
Fouladi, M. H., Namasivayam, S. N., Sekar, V., Marapan, P., Choo, H. L., Ong, T. K., ... & Baniotopoulos, C. (2020). Pretreatment studies and characterization of bio-degradable and 3d-printable filaments from coconut waste. International Journal of Nanoelectronics and Materials, 13(Special Issue), 137-148. https://research.birmingham.ac.uk/en/publications/pretreatment-studies-and-characterization-of-bio-degradable-and-3
Hahladakis JN, Iacovidou E. (2019. An overview of the challenges and trade-offs in closing the loop of post-consumer plastic waste (PCPW): Focus on recycling. J Hazard Mater. Dec 15;380:120887. doi: 10.1016/j.jhazmat.2019.120887.
Kaseem, M., Ur Rehman, Z., Hossain, S., Singh, A. K., & Dikici, B. (2021). A review on synthesis, properties, and applications of polylactic acid/silica composites. Polymers, 13(18), 3036. https://www.mdpi.com/2073-4360/13/18/3036
Kreiger, M. A., Mulder, M. L., Glover, A. G., & Pearce, J. M. (2014). Life cycle analysis of distributed recycling of post-consumer high density polyethylene for 3-D printing filament. Journal of cleaner production, 70, 90-96. https://www.sciencedirect.com/science/article/pii/S0959652614001504
Lin, D., Wambersie, L., & Wackernagel, M. (2022). Estimating the Date of Earth Overshoot Day 2022: Nowcasting the World’s Footprint & Biocapacity for 2022 (Informe técnico). Global Footprint Network. https://www.overshootday.org/content/uploads/2022/06/Earth-Overshoot-Day-2022-Nowcast-Report.pdf
Liu J, Sun L, Xu W, Wang Q, Yu S, Sun J. Current advances and future perspectives of 3D printing natural-derived biopolymers. Carbohydr Polym. 2019 Mar 1;207:297-316. doi: 10.1016/j.carbpol.2018.11.077.
Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem Rev. 2017 Aug 9;117(15):10212-10290. doi: 10.1021/acs.chemrev.7b00074.
Mirzaali, M. J., Moosabeiki, V., Rajaai, S. M., Zhou, J., & Zadpoor, A. A. (2022). Additive manufacturing of biomaterials—Design principles and their implementation. Materials, 15(15), 5457.https://www.mdpi.com/1996-1944/15/15/5457
Mobarak, M., Mahmud, M., & Hossain, N. (2024). Emerging trends in biomaterials for sustainable food packaging: A comprehensive review. Heliyon, 10. https://doi.org/10.1016/j.heliyon.2024.e24122.
Morseletto, P. (2023). Sometimes linear, sometimes circular: States of the economy and transitions to the future. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2023.136138
Nieto-Salas, D. (2021). La economía circular como un nuevo punto de vista de la economía y el desarrollo sostenible en la actualidad. Revista Científica Saberes 5.0, 1(2), 48-58. https://revistas.saberescincopuntocero.com/index.php/rcs50/article/view/112
Orozco Duarte, E. B. (2023). Estudio del comportamiento de la concha de mejillón como material absorbente para eliminar metales pesados de las aguas residuales. https://ruc.udc.es/entities/publication/c2eb11db-b984-4d57-ab61-dec90171bb13
Pakkanen, J., Manfredi, D., Minetola, P. and Iuliano, L. (2017) About the Use of Recycled or Biodegradable Filaments for Sustainability of 3D Printing. In: Campana, G., Howlett, R.J., Setchi, R. and Cimatti, B., Eds. (2017), Sustainable Design and Manufacturing. SDM. Smart Innovation, Systems and Technologies, Vol. 68, Springer International Publishing, Cham, 776-785. https://doi.org/10.1007/978-3-319-57078-5_73
Pérez, J., Rodriguez, C., Rodriguez, M., & Villacreses, C. (2020). Espacios maker: herramienta motivacional para estudiantes de ingeniería eléctrica de la Universidad Técnica de Manabí, Ecuador. Espacios, 41(02), 8. http://es.revistaespacios.com/a20v41n02/a20v41n02p12.pdf
Putruele, José E, & Veneziani, Marcia C. (2015). Sustentabilidad, diseño y reciclaje. Cuadernos del Centro de Estudios en Diseño y Comunicación. Ensayos, (53), 123-131. Recuperado en 29 de junio de 2025, de https://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1853-35232015000300011&lng=es&tlng=es.
Ramesh, M., Rajeshkumar, L. N., Srinivasan, N., Kumar, D. V., & Balaji, D. (2022). Influence of filler material on properties of fiber-reinforced polymer composites: a review. e-Polymers, 22(1), 898-916. https://www.degruyter.com/document/doi/10.1515/epoly-2022-0080/html
Revelo-Sánchez, O., Collazos-Ordóñez, C. A., & Jiménez-Toledo, J. A. (2018). El trabajo colaborativo como estrategia didáctica para la enseñanza/aprendizaje de la programación: una revisión sistemática de literatura. TecnoLógicas, 21(41), 115–134. https://doi.org/10.22430/22565337.731
Taborda Ríos, JA (2019). Estudio de propiedades mecánicas de material compuesto a base de fibra de bambú para aclaraciones aeronáuticas utilizando manufactura aditiva (Tesis doctoral, Universidad Autónoma de Nuevo León). http://eprints.uanl.mx/17998/1/1080288712.pdf
Urbinati, A., Franzò, S., Sassanelli, C., Rosa, P., Chiaroni, D., & Terzi, S. (2023). Exploiting 3-D printing for designing circular business models: A novel framework. IEEE Transactions on Engineering Management, 71, 9342-9356. https://ieeexplore.ieee.org/abstract/document/10321716/
Vargas, C. P. P. (2022). Aditivación de materiales biodegradables mediante el uso de derivados de colofonia (Doctoral dissertation, Universitat Politècnica de València). https://dialnet.unirioja.es/servlet/dctes?codigo=316075
Vega Guerrero, S., Rosales González, M. F., Salinas Ruiz, J., Rivera Yáñez, L., Dublan Barragán, B. S., JM, F. S. C., ... & Ortiz Verdín, A. A. (2021). Economía circular en manufactura. Innovación y Desarrollo Tecnológico Revista Digital, 13(2), 479-483. https://iydt.wordpress.com/wp-content/uploads/2021/05/2_04_economia-circular-en-manufactura.pdf
Villaplana, A. C. (2017), Tecnologías para el desarrollo sostenible. Revista de Filosofía de la Universidad de costa Rica, vol. 56, LVI (144), 89-10 https://archivo.revistas.ucr.ac.cr//index.php/filosofia/article/view/28333/28402
Sánchez, C. C. Z., Castro, G. B. L., & Anchundia, B. J. C. (2022). Materiales Poliméricos y el impacto ambiental: Una revisión. Polo del Conocimiento: Revista científico-profesional, 7(6), 596-614. https://dialnet.unirioja.es/servlet/articulo?codigo=9042528
Sauerwein, M. (2020). Additive manufacturing for design in a circular economy. Delft Univ Technol. https://repository.tudelft.nl/file/File_c5c3bcd4-4cf0-42de-bed3-ad2fc9165f3e
Sánchez, F. A. C., Boudaoud, H., Camargo, M., & Pearce, J. M. (2020). Plastic recycling in additive manufacturing: A systematic literature review and opportunities for the circular economy. Journal of Cleaner Production, 264, 121602. https://www.sciencedirect.com/science/article/pii/S0959652620316498
Zander, N.E., Park, J.H., Boelter, Z.R., & Gillan, M. (2019). Recycled Cellulose Polypropylene Composite Feedstocks for Material Extrusion Additive Manufacturing. ACS Omega, 4, 13879 - 13888. https://www.semanticscholar.org/paper/Recycled-Cellulose-Polypropylene-Composite-for-Zander-Park/3631e000826c140ba6f468d8c4a1f483dd6871eb
Zhao, F., Włodarczyk-Biegun, M., Wu, X., Schirhagl, R., & Wang, H. (2025). Integrating melt electrowriting (MEW) PCL scaffolds with fibroblast-laden hydrogel toward vascularized skin tissue engineering. Materials Today Bio, 31. https://doi.org/10.1016/j.mtbio.2025.101593.
Zhou, X., Wang, Q., Feng, S., Deng, J., Zhu, K., Xing, Y., ... y Lu, L. (2023). Reciclaje de recursos de carbono a partir de PET residual para reducir las emisiones de dióxido de carbono: análisis y perspectiva de la tecnología de carbonización. Journal of Renewable Materials , 11 (5), 2085. https://search.proquest.com/openview/e6ac7f03f952c57720ca9f1dd2cbe674/1?pq-origsite=gscholar&cbl=4577403
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Alina María Bracho Rodríguez, Ana Belén Pérez Baltar, Amanda Isabel Bracho Rodríguez, Junior Anthony Ortega Arana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.