Propiedades ópticas no lineales del difosfaferroceno. Un estudio teórico

Nonlinear optical properties of diphosphaferrocene. A theoretical study

  • Johan Urdaneta Universidad del Zulia - Venezuela
  • Humberto Soscún Universidad Técnica de Manabí - Ecuador
  • Ana Ocando Universidad del Zulia - Venezuela
  • Alberto Campos Universidad Técnica de Manabí - Ecuador

Resumen

 
La óptica no lineal (NLO, por sus siglas en inglés de: No Linear Optics) se ha desarrollado en los últimos años como un importante campo de investigación debido a su aplicabilidad en la fotoelectrónica y tecnología fotónica. En las últimas décadas los complejos organometálicos se han convertido en una clase de moléculas de gran interés en NLO. Estos complejos combinan las ventajas de las moléculas orgánicas con las ofrecidas por las sales inorgánicas. En este trabajo se realizó un estudio mecano-cuántico computacional de la contribución electrónica en fase gas de las propiedades ópticas del difosfaferroceno a nivel estático, empleando el método DFT CAM-B3LYP y el conjunto base 6-31+G(d,p), en conjunto con la metodología de campo finito basadas en la ecuaciones de Kurtz. Adicionalmente se realizaron cálculos para el ferroceno a modo comparativo. La comparación teoría-experimentales, muestra que la metodología empleada proporciona valores comparables, mostrando una correspondencia de 93 % para aave, y un 87 % para gave. Con respecto a las propiedades ópticas, se observa que el complejo de difosfaferroceno es mayormente polarizable que el ferroceno. Sin embargo, las mayores contribuciones se observan en las propiedades NLO, donde para b la respuesta calculada para el complejo difosfaferroceno es 72 ua, a diferencia de ferroceno el cual no presenta respuesta por ser una molécula centro simétrica. En gave, la respuesta es casi dos veces superior. Estos resultados permiten inferir que la interacción de anillos fosfolil con el átomo de Fe origina una mayor perturbación o deslocalización de la densidad electrónica de la molécula, promoviendo así elevadas respuestas ópticas cuando se aplican campos eléctricos, catalogándolo como un candidato potencial para el diseño de nuevos materiales NLO.
 
Palabras clave: NLO, difosfaferroceno, óptica, DFT, (hiper)polarizabilidades.
 
Abstract
Non linear optics (NLO) has been developed in recent years as an important field of research due to its applicability in photoelectronics and photonic technology. In recent decades organometallic complexes have become a class of molecules of great interest in NLO. These complexes combine the advantages of organic molecules with the ones offered by inorganic salts. In this work, a computational quantum mechanics study of the electronic contribution in gas phase of the optical properties of diphosphaferrocene at a static level was carried out, using the CAM-B3LYP DFT Method and the 6-31+G(d,p) basic set, together with the finite field methodology based on Kurtz equations. Additionally, the ferrocene molecule was studied for comparison purposes. The theory-experimental comparison shows that the methodology used provides comparable values, showing a 93% correspondence for aave, and 87% for gave. With respect to the optical properties, it is observed that the diphosphaferrocene complex is mostly more polarizable than ferrocene. However, the greatest contributions are observed in the NLO properties, where for b, the calculated response for the diphosphaferrocene complex is 72 ua, different from, which does not respond because it is a symmetric center molecule. In gave, the answer is almost double. These results allow us to infer that the interaction of phospholyl rings with the Fe atom causes a greater perturbation or delocalization of the electronic density of the molecule, promoting high optical responses when an electric field is applied, cataloging it as a potential candidate for the design of new NLO materials.
 
Key words: NLO, diphosphaferrocene, optics, DFT, (hyper) polarizabilities.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

Citas

Chen B., Pogue B., Goodwin I., O'Hara J., Wilmot C., Hutchin J., Hoopes P., Hasan T. (2003). Blood flow dynamics after potodynamic therapy with verteporfin in the RIF-1 tumor. radiation research, 160(4), 452-459.

Boyd R. (3rd Ed ed.). (2008). Nonlinear Optics. San Diego, USA: Elsevier.

Brédas J., Adant C., Tackx P., Persoons A., Pierce B. (1994). Third-order nonlinear optical response in organic materials: theoretical and experimental aspects. Chemical Reviews, 94(1), 243-278.

Frisch M., Pople J., Binkley J. (1984). Self-consistent molecular orbital methods. supplementary functions for gaussian basis sets. The Journal of Chemical Physics, 80(7), 3265-3269.
Gaussian 2009, Revision A.01.

Ghosal S., Samoc M., Prasad P., Tufariello J. (1990). Optical nonlinearities of organometallic structures: aryl and vinyl derivatives of ferrocene. The Journal of Physical Chemistry, 94(7), 2847-2851.

Green M., Marder S., Thompson M., Bandy J., Bloor D., Kolinsky P., Jones J. (1987). Synthesis and structure of (cis)-[1-ferrocenyl-2-(4-nitrophenyl)ethylene], an organotransition metal compound with a large second-order optical nonlinearity. Nature, 330(6146), 360-362.

Haaland A., Nilsson J. (1968). The determination of barriers to internal rotation by means of electron diffraction. Ferrocene and ruthenocene. Acta Chemica Scandinavica, 22, 2653-2670.

Herber R., Nowik I., Loginov D., Starikova Z., Kudinov A. (2004). Bonding, metal-atom dynamics and hyperfine interactions of η-phospholyl- and η-pentaphospholyliron complexes.

European Journal of Inorganic Chemistry, 2004(17), 3476-3483.

Durand R., Achelle S., Gauthier S., Cabon N., Ducamp M., Kahlal S., Saillard J., Barsella A., Le-Cuen F. (2018). Incorporation of a ferrocene unit in the π-conjugated structure of donor-
linker-acceptor (D-π-A) chromophores for nonlinear optics (NLO). Dyes and Pigments, 155, 68 - 74.

Jia J., Cui Y., Han L., Sheng W., Li Y., Gao J. (2014). Syntheses, third-order optical nonlinearity and DFT studies on benzoylferrocene derivatives. Dyes and Pigments, 104, 137-145.

Kaur S., Kaur M., Kaur P., Clays K., Singh K. (2017). Ferrocene chromophores continue to inspire. Fine-tuning and switching of the second-order nonlinear optical response. Coordination Chemistry Reviews, 343, 185 - 219.

Kurtz H., Stewart J., Dieter K. (1990). Calculation of the nonlinear optical properties of molecules. Journal of Computational Chemistry, 11(1), 82-87.

Li F.,Wu K. (2008). TDDFT study of the nonlinear optical properties of the rich d-electron molecular system – iridium/rhodium cluster: the effect of phosphaferrocene. Molecular Physics, 106(15), 1853–1866.

Morrall J., Dalton G., Humphrey M, Samoc M. (2007). Organotransition metal complexes for nonlinear optics. Advances in Organometallic Chemistry, 55, 61-136.

Réau R., Dyer P. (2008). Phospholes. Comprehensive heterocyclic chemistry III. Oxford, London: Elsevier, 3, 1029-1147.

Saleh. B, Teich M. (2nd Ed.). 2007. Fundamentals of photonic. photon optic. New York, USA: John Wiley & Sons.

Shelton D. (1994). Measurements and calculations of the hyperpolarizabilities of atoms and small molecules in the gas phase. Chemical Reviews, 94(1), 3-29.

Teimuri-Mofrad R., Rahimpour K., Ghadari R., Ahmadi-Kandjani S. (2017). Ferrocene based nonlinear optical chromophores: synthesis, characterization and study of optical properties. Journal of Molecular Liquids, 244, 322-329.

Thompson, M. E., Djurovich, P. E., Barlow, S., Marder, S., Editors-in-Chief: Robert, H. C., & Mingos, D. M. P. (2007). Organometallic complexes for optoelectronic applications. Comprehensive Organometallic Chemistry III. Oxford, London: Elsevier.

Valente A, Royer S., Narendra M., Silva T., Mendes P., Robalo M., Abreu M., Heck J., García H. (2013). Synthesis of new Fe(II) and Ru(II) η5-monocyclopentadienyl compounds showing significant second order NLO properties. Journal of Organometallic Chemistry, 736, 42-49.

Yanai T., Tew D., Handy N. (2004). A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chemical Physics Letters, 393, 51-57.
Publicado
2018-12-26
Sección
Ciencias Químicas