Synthesis and characterization of poly(1-methyltrimethylene carbonate) (PMTMC) by mean ring-opening polymerization

Síntesis y caracterización de poli(1-metiltrimetilencarbonato) (PMTMC) mediante polimerización por apertura de anillo

Autores/as

  • Jesús Miguel Contreras Ramírez Universidad de Los Andes
  • Meribary Monsalve Universidad de Guayaquil

DOI:

https://doi.org/10.33936/rev_bas_de_la_ciencia.v5i3.1863

Palabras clave:

Acetato de samario (III), Polimerización por apertura de anillo, 1-metiltrimetilencarbonato, poli(1-metiltrimetilencarbonato)

Resumen

  In this work, the activity of samarium (III) acetate (Sm(OAc)3) was evaluated as a possible initiator in the ring opening polymerization (ROP) of 1-methyltrimethylene carbonate (MTMC). The effects of temperature (Tr) and monomer-initiator molar ratio (M/I) on the molecular characteristics (conversion, dispersity, and molar mass) of the polymers obtained were analyzed. The reaction temperature was varied between 90 and 160 °C and the molar ratio M/I between 200 and 1000. The molar mass of the products was obtained by size exclusion chromatography (SEC), while its structure was analyzed using FT-IR and 1H-NMR spectroscopy. Thermal polymerization experiments (in the absence of an initiator) were performed in order to evaluate the effectiveness of the initiator. The comparison between the thermal polymerization of MTMC and its polymerization in the presence of Sm(OAc)3, suggests that acetate has very low catalytic activity as the initiator of the ROP of PMTMC. The molar masses of the polymers obtained ranged between 6000 and 10000 Dalton, and the monomer to polymer conversions varied between 9 and 30 %. SEC chromatograms showed monomodal and symmetric curves, suggesting that only one type of active species participates in the polymerization process. Based on the structural analysis, a polymerization mechanism was proposed in which the water possibly acts as the only active species that initiates the reaction.   Palabra clave: Samarium (III) acetate, ring-opening polymerization, 1-methyltrimethylenecarbonate, poly(1-methyltrimethylenecarbonate).   Abstract En este trabajo se evaluó la actividad del acetato de samario (III) (Sm(OAc)3) como posible iniciador en la polimerización de apertura de anillo (PAA) del carbonato de 1-metiltrimetileno (MTMC). Se analizaron los efectos de la temperatura (Tr) y relación molar monómero-iniciador (M/I) sobre las características moleculares (conversión, dispersidad y masa molar) de los polímeros obtenidos. La temperatura de reacción se varió entre 90 y 160 °C y la relación molar M/I entre 200 y 1000. La masa molar de los productos se obtuvo mediante cromatografía de exclusión por tamaño, mientras que su estructura fue analizada mediante espectroscopia FT-IR y 1H-RMN. Además, se realizaron algunos experimentos de polimerización térmica (en ausencia de iniciador) que sirvieron de referencia para evaluar la efectividad del iniciador. La comparación de los resultados obtenidos en la polimerización térmica y en presencia del Sm(OAc)3 indicó que este último presenta muy poca actividad catalítica como iniciador de la PAA de PMTMC. Las masas molares de los polímeros obtenidos oscilaron entre 6000 y 10000 Dalton, mientras que las conversiones de monómero a polímero variaron entre 9 y 30%. Los cromatogramas SEC mostraron curvas mono-modales y simétricas, indicando que en el proceso de polimerización participa un solo tipo de especie activa. En base al análisis estructural, mediante técnicas espectroscópicas, se propuso un mecanismo de reacción para la polimerización en la que el agua posiblemente actúa como la única especie activa iniciadora de la reacción.   Keywords: Acetato de samario (III), polimerización por apertura de anillo, 1-metiltrimetilencarbonato, poli(1-metiltrimetilencarbonato).

 

Descargas

La descarga de datos todavía no está disponible.

Citas

Albertsson, A. C., & Varma, I. K. (2003). Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules, 4(6), 1466-1486. https://doi.org/10.1021/bm034247a
Cai, J., Zhu K. J., & Yang, S. L. (1998). Surface biodegradable copolymers-poly(D,L-lactide-co-1-methyl-1,3-trimethylenecarbonate) and poly(D,L-lactide-co-2,2-dimethyl-1,3-trimethylenecarbonate): preparation, characterization and biodegradation characteristics in vivo. Polymer, 39(18), 4409-4415. https://doi.org/10.1016/S0032-3861(97)10346-9
Contreras Ramírez, J. M., & Monsalve, M. (2019). Use of samarium (III) acetate as initiator in ringopening polymerization of trimethylene carbonate. Journal of Macromolecular Science, Part A. Pure and Applied Chemistry, 56(12), 114-1120. https://doi.org/10.1080/10601325.2019.1658527
Contreras Ramírez, J. M., Medina, D., López-Carrasquero, F., & Contreras, R. R. (2019). Ring-Opening Polymerization of L-lactide Initiated by Samarium(III) Acetate. Current Applied Polymer Science, 3, 112-119. https://doi.org/10.2174/2452271602666181114094536
Contreras, J. M., Medina, D., López-Carrasquero, F., & Contreras, R. R. (2013). Ring-opening polymerization of ε-caprolactone initiated by samarium acetate. Journal of Polymer Research, 20(12), 244. https://doi.org/10.1007/s10965-013-0244-z
Florjańczyk, Z., Plichta, A., & Sobczak, M. (2006). Ring opening polymerization initiated by methylaluminoxane/AlMe3 complexes. Polymer, 47(4), 1081-1090. https://doi.org/10.1016/j.polymer.2005.11.077
Gowda, R. R., & Chakraborty, D. (2009). Environmentally benign process for bulk ring opening polymerization of lactones using iron and ruthenium chloride catalysts. Journal of Molecular Catalysis A: Chemical, 301(1-2), 84-92. https://doi.org/10.1016/j.molcata.2008.11.010
Hesse, M., Meier, H., & Zeeh, B. (1995). Métodos espectroscópicos en química orgánica. Editorial Síntesis, quinta edición, Madrid-España.
Horta, A. (1991). Macromoléculas. 1a edición. Madrid-España. Universidad Nacional de Educación a Distancia.
Jerome, C., & Lecomte, P. (2008). Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization. Advanced Drug Delivery Reviews, 60(9), 1056–1076. https://doi.org/10.1016/j.addr.2008.02.008
Keul, H., Bächer, R., & Höcker, H. (1986). Anionic ring-opening polymerization of 2,2-dimethyltrimethylene carbonate. Macromolecular Chemistry and Physics, 187(11), 2579-2589. https://doi.org/10.1002/macp.1986.021871107
Kühling, S., Keul, H., & Höcker, H. (1989). Active species in the anionic ring-opening polymerization of cyclic carbonates. Macromolecular Chemistry and Physics, 15(S19891), 9-13. https://doi.org/10.1002/macp.1989.020151989102
Kühling, S., Keul, H., & Höcker, H. (1990). Polymers from 2-allyloxymethyl-2-ethyltrimethylenecarbonate and copolymers with 2,2-dimethyltrimethylene carbonate obtained by anionic ring-opening polymerization. Macromolecular Chemistry and Physics, 191(7), 1611-1622. https://doi.org/10.1002/macp.1990.021910713
Kühling, S., Keul, H., & Höcker, H. (1992). Copolymerization of 2,2-dimethyltrimethylene carbonate with 2-allyloxymethyl-2-ethyltrimethylenecarbonate and with ε-caprolactone using initiators on the basis of Li, Al, Zn and Sn. Macromolecular chemistry and Physics, 193(5), 1207-1217. https://doi.org/10.1002/macp.1992.021930517
Ling, J., & Shen, Z. (2002). Lanthanum Tris(2,6‐di‐tert‐butyl‐4‐methylphenolate) as a Novel, Versatile Initiator for Homo‐ and Copolymerization of Cyclic Carbonates and Lactones. Macromolecular Chemistry and Physics, 203(4), 735-738. https://doi.org/10.1002/1521-3935(20020301)203:4<735::AID-MACP735>3.0.CO;2-W
Ling, J., Dai, Y., Zhu, Y., Sun, W., & Shen, Z. (2010). Ring-opening polymerization of 1-methyltrimethylenecarbonate by rare earth initiators. Journal of Polymer Science, Part A: Polymer Chemical, 48(17), 3807-3815. https://doi.org/10.1002/pola.24166
Matsuo, J., Aoki, K., Sanda, F., & Endo, T. (1998). Substituent effect on the anionic equilibrium polymerization of six-membered cyclic carbonates. Macromolecules, 31(14), 4432-4438. https://doi.org/10.1021/ma971227q
Medina, D. A., Contreras, J. M., López-Carrasquero, F. J., Cardozo, E. J., & Contreras, R. R. (2018). Use of samarium(III)-aminoacid complexes as initiators of ring-opening polymerization of cyclic esters. Polymer Bulletin, 75(3), 1253-1263. https://doi.org/10.1007/s00289-017-2089-9
Monsalve, M., & Contreras, J. (2014). Carbonatos orgánicos cíclicos como monómeros: síntesis y caracterización. Revista científica UNET, 26(1), 67-79.
Monsalve, M., Contreras, J., Cardozo E., & Contreras, R. R. (2015). Evaluación de la actividad de complejos de samario (III) con ácido L-aspártico, ácido L-glutámico, glicina y o-fenantrolina, como iniciadores en la polimerización de carbonatos cíclicos. Avances en Química, 10(3), 129-137.
Murayama, M., Sanda, F., & Endo, T. (1998). Anionic ring-opening polymerization of a cyclic carbonate having a norbornene structure with amine initiators. Macromolecules, 31(3), 919-923. https://doi.org/10.1021/ma970878j
Nair, L. S., & Laurencin, C. T. (2007). Biodegradable polymers as biomaterials. Progress in Polymer Science, 32(8-9), 762–798. https://doi.org/10.1016/j.progpolymsci.2007.05.017
Odian, G. (2004). Principles of polymerization, 4ta edición. New Jersey-USA. Wiley-Interscience Publication.
Okada, M. (2002). Chemical syntheses of biodegradable polymers. Progress in Polymer Science, 27(1), 87-133. https://doi.org/10.1016/S0079-6700(01)00039-9
Pawłowski, P., & Rokicki, G. (2004). Synthesis of oligocarbonate diols from ethylene carbonate and aliphatic diols catalyzed by alkali metal salts. Polymer, 45(10), 3125–3137. https://doi.org/10.1016/j.polymer.2004.03.047
Penczek, S., Cypryk M., Duda, A., Kubisa, P., & Slomkowski, S. (2007). Living ring-opening polymerizations of heterocyclic monomers. Progress in Polymer Science, 32(2), 247–282. https://doi.org/10.1016/j.progpolymsci.2007.01.002
Rokicki, G., Piotrowska A., & Pawłowski, P. (2003). Macrocyclic vs. Linear Polymer Formation in the Coordination−Insertion Polymerization of Cyclic Carbonates. Polymer Journal, 35(2), 133-140. https://doi.org/10.1295/polymj.35.133
Save, M., Schappacher, M., & Soun, A. (2002). Controlled ring-opening polymerization of lactones and lactides initiated by lanthanum isopropoxide. Macromolecular Chemistry and Physics, 203(5-6), 889–899. https://doi.org/10.1002/1521-3935(20020401)203:5/6<889::AID-MACP889>3.0.CO;2-O
Tsutsumi, C., & Yasuda, H. (2001). Biodegradation of copolymers composed of optically active L-lactide and (R)- or (S)-1-methyltrimethylenecarbonate. Journal of Polymer Science, Part A: Polymer Chemistry, 39(22), 3916-3927. https://doi.org/10.1002/pola.10035
Vroman, I., & Tighzert, L. (2009). Biodegradable polymers. Materials, 2(2), 307-344. https://doi.org/10.3390/ma2020307
Wang, Y., Zhang, L., Gao, X., Zhang, R., & Li, J. (2013). Characteristics and mechanism of L-lactide polymerization using N-heterociclic carbine organocatalyst. Journal of Polymer Research, 20, 87. https://doi.org/10.1007/s10965-013-0087-7
Wang, H., Dong, J. H., & Qiu, K. Y. (1998). Synthesis and characterization of ABA-type block copolymer of poly(trimethylenecarbonate) with poly(ethylene glycol): Bioerodible copolymer. Journal of Polymer Science, Part A: Polymer Chemistry, 36(5), 695-702. https://doi.org/10.1002/(SICI)1099-0518(19980415)36:5<695::AID-POLA3>3.0.CO;2-L
Wurm, B., Keul, H., Höcker, H., Sylvester, G., Leitz, E., & Ott, K. H. (1992). Dibutylmagnesium- an initiator for the ring-opening polymerization of 2,2-dimethyltrimethylenecarbonate and ε-caprolactone. Macromolecular Rapid Communications, 13(1), 9-14. https://doi.org/10.1002/marc.1992.030130102
Yamashita, Y. (1978). Random and block copolymers by ring-opening polymerization, In: Polymerization reactions. Advances in Polymer Science, 28, 1-46. https://doi.org/10.1007/3-540-08885-7_1
Yu, C., Zhang, L., & Shen, Z. (2004). Ring-opening polymerization of 2,2-dimethyltrimethylenecarbonate using rare earth tris(4-tert-butylphenolate)s as a single component initiator. Journal Molecular Catalysis A: Chemical, 212(1-2), 365-369. https://doi.org/10.1016/j.molcata.2003.12.003
Yu, F., & Zhuo, R. (2004). Synthesis and Characterization of OH-Terminated Poly(trimethylenecarbonate)s by Alcohol-Initiated Ring-Opening Polymerization in Melt Bulk without Using Any Catalyst. Polymer Journal, 36(1), 28-33. https://doi.org/10.1295/polymj.36.28

Descargas

Publicado

2020-12-31

Número

Sección

Ciencias Químicas