Proceso Sol-Gel en la Síntesis de Dióxido de Silicio (SiO2)
DOI:
https://doi.org/10.33936/rev_bas_de_la_ciencia.v6i2.2548Palabras clave:
Sílice; Sol-gel; Hidrólisis; Condensación; Alcóxido; Organosilano, SiO2.Resumen
En ciencia de los materiales el dióxido de silicio, también conocido como sílice, ha recibido significante atención en diferentes áreas de investigación, ganando un espacio importante y de mucho interés entre los investigadores, debido a sus diversas aplicaciones que abarcan desde la síntesis de soportes para catalizadores hasta materiales para la liberación controlada de fármacos. Es motivo por el cual, en este manuscrito se dan a conocer aspectos químicos fundamentales e importantes sobre el proceso sol-gel en la síntesis de la sílice a partir de moléculas precursoras de alcóxidos de silicio y organosilanos. Se analiza cómo el catalizador ácido/básico y el tipo de precursor afectan a las reacciones de hidrólisis y condensación, así como a la estructura y morfología del material. Palabra clave: Sílice, Sol-gel, Hidrólisis, Condensación, Alcóxido. AbstractIn materials science, silicon dioxide has received significant attention in different research areas, gaining valuable space and interest between researchers due to its diverse applications, ranging from the synthesis of supports for catalysts to materials for controlled drug liberation. Herein we describe fundamental and important chemical aspects of the sol-gel process in the synthesis of silica, starting from precursor molecules of silicon alkoxides and organosilanes. Moreover, this review analyses how the acid/basic catalyst and the type of precursor affect the hydrolysis and condensation reaction, as well as the structure and morphology of the obtained material.
Keywords: Silica, Sol-gel, Hydrolysis, Condensation, Alkoxide.Descargas
Citas
Ashraful Alam, Md., Takafuji, M., y Ihara, H. (2013). Thermosensitive hybrid hydrogels with silica nanoparticle-cross-linked polymer networks. Journal of Colloid and Interface Science, 405, 109–117.
Benvenutti, E. V., Moro, C. C., Costa, T. M. H., y Gallas, M. R. (2009). Materiais híbridos à base de sílica obtidos pelo método sol-gel. Química Nova, 32(7), 1926–1933.
Brinker, C. J. (1988). Hydrolysis and condensation of silicates: Effects on structure. Journal of Non-Crystalline Solids, 100(1), 31–50.
Brinker, C. J., y Scherer, G. W. (1990). Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Academic Press.
Cheng, X., Chen, D., y Liu, Y. (2012). Mechanisms of Silicon Alkoxide Hydrolysis–Oligomerization Reactions: A DFT Investigation. ChemPhysChem, 13(9), 2392–2404.
Costa, T. M. H., Gallas, M. R., Benvenutti, E. V., y Da Jornada, J. A. H. (1997). Infrared and thermogravimetric study of high pressure consolidation in alkoxide silica gel powders. Journal of Non-Crystalline Solids, 220(2), 195–201.
Dudziec, B., Żak, P., Dutkiewicz, M., Franczyk, A., y Marciniec, B. (2016). 10—Synthesis of Functionalized Silsesquioxanes as Molecular Templates for Hybrid Materials. Efficient Methods for Preparing Silicon Compounds, 143–159.
Elma, M., y Setyawan, H. (2018). Synthesis of Silica Xerogels Obtained in Organic Catalyst via Sol Gel Route. IOP Conference Series: Earth and Environmental Science, 175, 012008.
Fernandes, R. S., Raimundo, I. M., y Pimentel, M. F. (2019). Revising the synthesis of Stöber silica nanoparticles: A multivariate assessment study on the effects of reaction parameters on the particle size. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 577, 1–7.
Gel|physics and chemistry. (2020, January 26). Encyclopedia Britannica. www.britannica.com/science/gel
Guglielmi, M., y Carturan, G. (1988). Precursors for sol-gel preparations. Journal of Non-Crystalline Solids, 100(1), 16–30.
He, J., Lu, X.-H., Shen, Y., Jing, R., Nie, R.-F., Zhou, D., y Xia, Q.-H. (2017). Highly selective hydrogenation of phenol to cyclohexanol over nano silica supported Ni catalysts in aqueous medium. Molecular Catalysis, 440, 87–95.
Henschel, H., Schneider, A. M., y Prosenc, M. H. (2010). Initial Steps of the Sol−Gel Process: Modeling Silicate Condensation in Basic Medium. Chemistry of Materials, 22(17), 5105–5111.
Ibrahim, I. A. M., Zikry, A. A. F., y Sharaf, M. A. (2010). Preparation of spherical silica nanoparticles: Stöber silica. Journal of American Science, 6(11).
Innocenzi, P. (2019). The Sol-to-Gel Transition (2.ª ed). Springer
Issa, A. A., y Luyt, A. S. (2019). Kinetics of Alkoxysilanes and Organoalkoxysilanes Polymerization: A Review. Polymers, 11(3), 537.
Iswar, S., Malfait, W. J., Balog, S., Winnefeld, F., Lattuada, M., y Koebel, M. M. (2017). Effect of aging on silica aerogel properties. Microporous and Mesoporous Materials, 241, 293–302.
Jitianu, A., Britchi, A., Deleanu, C., Badescu, V., y Zaharescu, M. (2003). Comparative study of the sol–gel processes starting with different substituted Si-alkoxides. Journal of Non-Crystalline Solids, 319(3), 263–279.
José, N. M., y Prado, L. A. S. de A. (2005). Materiais híbridos orgânico-inorgânicos: Preparação e algumas aplicações. Química Nova, 28(2), 281–288.
Judeinstein, P., y Sanchez, C. (1996). Hybrid organic–inorganic materials: A land of multidisciplinarity. Journal of Materials Chemistry, 6(4), 511–525.
Li, G., Wang, L., Ni, H., y Pittman, C. U. (2001). Polyhedral Oligomeric Silsesquioxane (POSS) Polymers and Copolymers: A Review. Journal of Inorganic and Organometallic Polymers, 11(3), 123–154.
Lu, Z., Dai, J., Song, X., Wang, G., y Yang, W. (2008). Facile synthesis of Fe3O4/SiO2 composite nanoparticles from primary silica particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317(1), 450–456.
Machado, J. K. de F. B., Marçal, A. L., Lima, O. J. de, Ciuffi, K. J., Nassar, E. J., y Calefi, P. S. (2011). Materiais híbridos orgânico-inorgânicos (ormosil) obtidos por sol-gel com potencial uso como filtro solar. Química Nova, 34(6), 945–949.
Morales, F., Márquez, G., Sagredo, V., Torres, T. E., y Denardin, J. C. (2019). Structural and magnetic properties of silica-coated magnetite nanoaggregates. Physica B: Condensed Matter, 572, 214–219.
Nasir, R. B., y Varma, R. S. (2013). Magnetic Silica-Supported Ruthenium Nanoparticles: An Efficient Catalyst for Transfer Hydrogenation of Carbonyl Compounds. ACS Sustainable Chemistry & Engineering, 1(7), 805–809.
Osváth, Z., Tóth, T., y Iván, B. (2017). Sustained Drug Release by Thermoresponsive Sol–Gel Hybrid Hydrogels of Poly(N-Isopropylacrylamide-co-3-(Trimethoxysilyl)Propyl Methacrylate) Copolymers. Macromolecular Rapid Communications, 38(6), 1600724.
Pierre, A. C. (1998). Introduction to sol-gel processing. Kluwer Academic Publishers.
Pope, E. J. A., y Mackenzie, J. D. (1986). Sol-gel processing of silica: II. The role of the catalyst. Journal of Non-Crystalline Solids, 87(1), 185–198.
Ruggiero, L., Di Bartolomeo, E., Gasperi, T., Luisetto, I., Talone, A., Zurlo, F., Peddis, D., Ricci, M. A., y Sodo, A. (2019). Silica nanosystems for active antifouling protection: Nanocapsules and mesoporous nanoparticles in controlled release applications. Journal of Alloys and Compounds, 798, 144–148.
Sol|colloid. (2020, January 26). Encyclopedia Britannica. www.britannica.com/science/sol-colloid
Sönmez, M., Ficai, D., Ficai, A., Alexandrescu, L., Georgescu, M., Trusca, R., Gurau, D., Titu, M. A., y Andronescu, E. (2018). Applications of mesoporous silica in biosensing and controlled release of insulin. International Journal of Pharmaceutics, 549(1), 179–200.
Stöber, W., Fink, A., y Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26(1), 62–69.
Takafuji, M., Alam, Md. A., Goto, H., y Ihara, H. (2015). Microspherical hydrogel particles based on silica nanoparticle-webbed polymer networks. Journal of Colloid and Interface Science, 455, 32–38.
Tan, B., y Rankin, S. E. (2006). Study of the Effects of Progressive Changes in Alkoxysilane Structure on Sol−Gel Reactivity. The Journal of Physical Chemistry B, 110(45), 22353–22364.
Tessarolli, B. O., Silva, P. V. da, Gallardo, E. C., Magdalena, A. G., Tessarolli, B. O., Silva, P. V. da, Gallardo, E. C., y Magdalena, A. G. (2019). Síntese e caracterização de nanopartículas de Fe3O4@SiO2. Matéria (Rio de Janeiro), 24(4).
Turova, N. Y., Turevskaya, E. P., Kessler, V. G., y Yanovskaya, M. I. (Eds.). (2002). The Chemistry of Metal Alkoxides. Springer US.
Ying, J. Y., Benziger, J. B., y Navrotsky, A. (1993). Structural Evolution of Alkoxide Silica Gels to Glass: Effect of Catalyst pH. Journal of the American Ceramic Society, 76(10), 2571–2582.
Zhai, Q., Zhou, C., Zhao, S., Peng, C., y Han, Y. (2014). Kinetic Study of Alkoxysilane Hydrolysis under Acidic Conditions by Fourier Transform Near Infrared Spectroscopy Combined with Partial Least-Squares Model. Industrial & Engineering Chemistry Research, 53(35), 13598–13609.
Zhou, H., Ye, Q., y Xu, J. (2017). Polyhedral oligomeric silsesquioxane-based hybrid materials and their applications. Materials Chemistry Frontiers, 1(2), 212–230.