Estimación de zonas potenciales de aguas subterráneas en la cuenca del río Portoviejo mediante análisis jerárquico basado en SIG y teledetección
DOI:
https://doi.org/10.33936/rev_bas_de_la_ciencia.v6i1.2648Palabras clave:
Agua subterránea, AHP, GWPI, PortoviejoResumen
La utilización del agua subterránea en Ecuador se ha venido incrementando y cada día gana importancia debido al agotamiento, contaminación o inexistencia de fuentes superficiales. Sin embargo, la información hidrogeológica de la cual dispone el país es incompleta, desactualizada y dispersa, faltando implementar estrategias para la gestión del recurso hídrico subterráneo, iniciando con el proceso de legalización y regularización de los concesionarios formales e informales. El presente estudio tuvo como objetivo determinar las zonas potenciales de aguas subterráneas en la cuenca del río Portoviejo aplicando el método de análisis jerárquico (AHP, según sus siglas en inglés) basado en el sistema de información geográfica (SIG) y teledetección de acceso libre. A partir de este análisis se obtuvo el índice de potencial de aguas subterráneas (GWPI, según sus siglas en inglés), utilizado para la creación del mapa de zonas potenciales, el cual fue comparado con datos existentes en el inventario de puntos de agua. En la validación, se obtuvo una efectividad del 87 % para el mapa resultante, el cual ha sido influenciado en mayor grado por la permeabilidad de la roca, la precipitación y la densidad de drenajes, y en menor proporción por la pendiente del terreno y el índice de vegetación de diferencia normalizada (NDVI, según sus siglas en inglés). Palabra clave: agua subterránea, AHP, GWPI. AbstractThe use of groundwater in Ecuador has been increasing and is gaining importance every day due to the depletion, contamination, or non-existence of surface sources. However, the hydrogeological information available in the country is incomplete, outdated, and dispersed, and there is a lack of strategies for managing subway water resources, starting with the process of legalization and regularization of formal and informal concessionaires. The objective of this study was to determine the potential groundwater areas in the Portoviejo River basin by applying the hierarchical analysis method (AHP) based on geographic information system (GIS) and remote sensing with free access. From this analysis, the groundwater potential index (GWPI) was obtained, used to create the map of potential areas, which was compared with existing data in the inventory of water points. In the validation, effectiveness of 87 % was obtained for the resulting map, which has been influenced in greater degree by the permeability of the rock, the precipitation and the density of drainages, and in smaller proportion by the slope of the land and the normalized difference vegetation index (NDVI).
Keywords: AHP, groundwater, GWPI.Descargas
Citas
Al-Tawfiq, J. A., & Memish, Z. A. (2014). Middle East respiratory syndrome coronavirus: Epidemiology and disease control measures. Infection and Drug Resistance, 7, 281–287. https://doi.org/10.2147/IDR.S51283
Aldeghi, M., Heifetz, A., Bodkin, M. J., Knapp, S., & Biggin, P. C. (2016). Accurate calculation of the absolute free energy of binding for drug molecules. Chemical Science, 7(1), 207–218. https://doi.org/10.1039/c5sc02678d
Báez-Santos, Y. M., St. John, S. E., & Mesecar, A. D. (2015). The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds. Antiviral Research, 115, 21–38. https://doi.org/10.1016/j.antiviral.2014.12.015
Burton, R. E., & Kebler, R. W. (1960). The “half-life” of some scientific and technical literatures. American Documentation, 11(1), 18–22. https://doi.org/10.1002/asi.5090110105
Capell, Teresa, Richard M. Twyman, Victoria Armario-Najera, Julian K. C. Ma, Stefan Schillberg, and Paul Christou. 2020. Potential Applications of Plant Biotechnology against SARS-CoV-2. Trends in Plant Science, 25(7), 635–43. https://doi.org/10.1016/j.tplants.2020.04.009
Chang, F. R., Yen, C. T., Ei-Shazly, M., Lin, W. H., Yen, M. H., Lin, K. H., & Wu, Y. C. (2012). Anti-human coronavirus (anti-HCoV) triterpenoids from the leaves of Euphorbia neriifolia. Natural Product Communications, 7(11), 1415–1417. https://doi.org/10.1177/1934578x1200701103
Cho, J. K., Curtis-Long, M. J., Lee, K. H., Kim, D. W., Ryu, H. W., Yuk, H. J., & Park, K. H. (2013). Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorganic and Medicinal Chemistry, 21(11), 3051–3057. https://doi.org/10.1016/j.bmc.2013.03.027
Daczkowski, C. M., Dzimianski, J. V., Clasman, J. R., Goodwin, O., Mesecar, A. D., & Pegan, S. D. (2017). Structural Insights into the Interaction of Coronavirus Papain-Like Proteases and Interferon-Stimulated Gene Product 15 from Different Species. Journal of Molecular Biology, 429(11), 1661–1683. https://doi.org/10.1016/j.jmb.2017.04.011
Faridi, U. (2018). Middle East respiratory syndrome coronavirus (MERS-CoV): Impact on Saudi Arabia, 2015. Saudi Journal of Biological Sciences, 25(7), 1402–1405. https://doi.org/10.1016/j.sjbs.2016.09.020
Fehr, A. R., & Perlman, S. (2015). Coronaviruses: An overview of their replication and pathogenesis. Coronaviruses: Methods and Protocols, 1282, 1–23. https://doi.org/10.1007/978-1-4939-2438-7_1
Gupta, M. K., Vemula, S., Donde, R., Gouda, G., Behera, L., & Vadde, R. (2020). In-silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel. Journal of Biomolecular Structure and Dynamics, 1. https://doi.org/10.1080/07391102.2020.1751300
Gurung, A. B., Ali, M. A., Lee, J., Farah, M. A., & Al-Anazi, K. M. (2020). Unravelling lead antiviral phytochemicals for the inhibition of SARS-CoV-2 Mpro enzyme through in silico approach. Life Sciences, 255, 117831. https://doi.org/10.1016/j.lfs.2020.117831
Gyebi, G. A., Ogunro, O. B., Adegunloye, A. P., Ogunyemi, O. M., & Afolabi, S. O. (2020). Potential Inhibitors of Coronavirus 3-Chymotrypsin-Like Protease (3CL pro ): An in silico screening of Alkaloids and Terpenoids from African medicinal plants. Journal of Biomolecular Structure and Dynamics, 1–19. https://doi.org/10.1080/07391102.2020.1764868
Henss, L., Scholz, T., Grünweller, A., & Schnierle, B. S. (2018). Silvestrol inhibits chikungunya virus replication. Viruses, 10(11). https://doi.org/10.3390/v10110592
Ho, T. Y., Wu, S. L., Chen, J. C., Li, C. C., & Hsiang, C. Y. (2007). Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Research, 74(2), 92–101. https://doi.org/10.1016/j.antiviral.2006.04.014
Hong, E. H., Song, J. H., Kang, K. Bin, Sung, S. H., Ko, H. J., & Yang, H. (2015). Anti-influenza activity of betulinic acid from Zizyphus Jujuba on influenza A/PR/8 virus. Biomolecules and Therapeutics, 23(4), 345–349. https://doi.org/10.4062/biomolther.2015.019
Jiangning, G., Xinchu, W., Hou, W., Qinghua, L., & Kaishun, B. (2005). Antioxidants from a Chinese medicinal herb - Psoralea corylifolia L. Food Chemistry, 91(2), 287–292. https://doi.org/10.1016/j.foodchem.2004.04.029
Joshi, R. S., Jagdale, S. S., Bansode, S. B., Shankar, S. S., Tellis, M. B., Pandya, V. K., Chugh, A., Giri, A. P., & Kulkarni, M. J. (2020). Discovery of Potential Multi-Target-Directed Ligands by Targeting Host-specific SARS-CoV-2 Structurally Conserved Main Protease. Journal of Biomolecular Structure & Dynamics, 1–16. https://doi.org/10.1080/07391102.2020.1760137
Kar, P., Sharma, N. R., Singh, B., Sen, A., & Roy, A. (2020). Natural compounds from Clerodendrum spp. as possible therapeutic candidates against SARS-CoV-2: An in silico investigation. Journal of Biomolecular Structure & Dynamics, 1–12. https://doi.org/10.1080/07391102.2020.1780947
Kim, D. E., Min, J. S., Jang, M. S., Lee, J. Y., Shin, Y. S., Park, C. M., Song, J. H., Kim, H. R., Kim, S., Jin, Y. H., & Kwon, S. (2019). Natural bis-benzylisoquinoline alkaloids-tetrandrine, fangchinoline, and cepharanthine, inhibit human coronavirus oc43 infection of mrc-5 human lung cells. Biomolecules, 9(11), 696. https://doi.org/10.3390/biom9110696
Kim, D. W., Seo, K. H., Curtis-Long, M. J., Oh, K. Y., Oh, J. W., Cho, J. K., Lee, K. H., & Park, K. H. (2014). Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. Journal of Enzyme Inhibition and Medicinal Chemistry, 29(1), 59–63. https://doi.org/10.3109/14756366.2012.753591
Kumaki, Y., Wandersee, M. K., Smith, A. J., Zhou, Y., Simmons, G., Nelson, N. M., Bailey, K. W., Vest, Z. G., Li, J. K. K., Chan, P. K. S., Smee, D. F., & Barnard, D. L. (2011). Inhibition of severe acute respiratory syndrome coronavirus replication in a lethal SARS-CoV BALB/c mouse model by stinging nettle lectin, Urtica dioica agglutinin. Antiviral Research, 90(1), 22–32. https://doi.org/10.1016/j.antiviral.2011.02.003
Kumar, A., Choudhir, G., Shukla, S. K., Sharma, M., Tyagi, P., Bhushan, A., & Rathore, M. (2020). Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches. Journal of Biomolecular Structure and Dynamics, 1–11. https://doi.org/10.1080/07391102.2020.1772112
Lee, C. (2019). Griffithsin, a highly potent broad-spectrum antiviral lectin from red algae: From discovery to clinical application. Marine Drugs, 17(10). https://doi.org/10.3390/md17100567
Lee, C. S., Jang, E. R., Kim, Y. J., Myung, S. C., Kim, W., & Lee, M. W. (2012). Diarylheptanoid hirsutenone enhances apoptotic effect of TRAIL on epithelial ovarian carcinoma cell lines via activation of death receptor and mitochondrial pathway. Investigational New Drugs, 30(2), 548–557. https://doi.org/10.1007/s10637-010-9601-5
Li, F., Song, X., Su, G., Wang, Y., Wang, Z., Jia, J., Qing, S., Huang, L., Wang, Y., Zheng, K., & Wang, Y. (2019). Amentoflavone inhibits HSV-1 and ACV-resistant strain infection by suppressing viral early infection. Viruses, 11(5). https://doi.org/10.3390/v11050466
Luk, H. K. H., Li, X., Fung, J., Lau, S. K. P., & Woo, P. C. Y. (2019). Molecular epidemiology, evolution and phylogeny of SARS coronavirus. Infection, Genetics and Evolution, 71, 21–30. https://doi.org/10.1016/j.meegid.2019.03.001
Maeda, T., Yoshinaka, Y., Yonemoto, Y., Higuchi, H., Kitabayashi, T., & Hattori, K. (2011). Anti SARS-CoV Activity of Extracts from Japanese Pepper (Zanthoxylum piperitum (L.) DC. f. inerme Makino). Horticultural Research (Japan), 10(2), 267–272. https://doi.org/10.2503/hrj.10.267
Millet, J. K., Séron, K., Labitt, R. N., Danneels, A., Palmer, K. E., Whittaker, G. R., Dubuisson, J., & Belouzard, S. (2016). Middle East respiratory syndrome coronavirus infection is inhibited by griffithsin. Antiviral Research, 133, 1–8. https://doi.org/10.1016/j.antiviral.2016.07.011
Miranda-Sapla, M. M., Tomiotto-Pellissier, F., Assolini, J. P., Carloto, A. C. M., Bortoleti, B. T. da S., Gonçalves, M. D., Tavares, E. R., Rodrigues, J. H. da S., Simão, A. N. C., Yamauchi, L. M., Nakamura, C. V., Verri, W. A., Costa, I. N., Conchon-Costa, I., & Pavanelli, W. R. (2019). trans-Chalcone modulates Leishmania amazonensis infection in vitro by Nrf2 overexpression affecting iron availability. European Journal of Pharmacology, 853, 275–288. https://doi.org/10.1016/j.ejphar.2019.03.049
Mizar, P., Arya, R., Kim, T., Cha, S., Ryu, K. S., Yeo, W. S., Bae, T., Kim, D. W., Park, K. H., Kim, K. K., & Lee, S. S. (2018). Total Synthesis of Xanthoangelol B and Its Various Fragments: Toward Inhibition of Virulence Factor Production of Staphylococcus aureus. Journal of Medicinal Chemistry, 61(23), 10473–10487. https://doi.org/10.1021/acs.jmedchem.8b01012
Müller, C., Schulte, F. W., Lange-Grünweller, K., Obermann, W., Madhugiri, R., Pleschka, S., Ziebuhr, J., Hartmann, R. K., & Grünweller, A. (2018). Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses. Antiviral Research, 150, 123–129. https://doi.org/10.1016/j.antiviral.2017.12.010
O’Keefe, B. R., Giomarelli, B., Barnard, D. L., Shenoy, S. R., Chan, P. K. S., McMahon, J. B., Palmer, K. E., Barnett, B. W., Meyerholz, D. K., Wohlford-Lenane, C. L., & McCray, P. B. (2010). Broad-Spectrum In Vitro Activity and In Vivo Efficacy of the Antiviral Protein Griffithsin against Emerging Viruses of the Family Coronaviridae. Journal of Virology, 84(5), 2511–2521. https://doi.org/10.1128/jvi.02322-09
OMS. (2020, May 2). Nuevo coronavirus 2019. https://www.who.int/es/emergencies/diseases/novel-coronavirus-2019?gclid=EAIaIQobChMI2dGa3LbI6QIVVbLVCh0xwwIvEAAYASAAEgI0OvD_BwE
Parasuraman, S., Thing, G. S., & Dhanaraj, S. A. (2014). Polyherbal formulation: Concept of ayurveda. Pharmacognosy Reviews, 8(16), 73–80. https://doi.org/10.4103/0973-7847.134229
Park, J.-Y., Jeong, H. J., Kim, J. H., Kim, Y. M., Park, S.-J., Kim, D., Park, K. H., Lee, W. S., & Ryu, Y. B. (2012). Diarylheptanoids from Alnus japonica Inhibit Papain-Like Protease of Severe Acute Respiratory Syndrome Coronavirus. Biological and Pharmaceutical Bulletin, 35(11), 2036–2042. https://doi.org/10.1248/bpb.b12-00623
Park, J. Y., Ko, J. A., Kim, D. W., Kim, Y. M., Kwon, H. J., Jeong, H. J., Kim, C. Y., Park, K. H., Lee, W. S., & Ryu, Y. B. (2016). Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(1), 23–30. https://doi.org/10.3109/14756366.2014.1003215
Patil, V., Patil, S. A., Patil, R., Bugarin, A., Beaman, K., & Patil, S. A. (2018). Exploration of (hetero)aryl Derived Thienylchalcones for Antiviral and Anticancer Activities. Medicinal Chemistry, 15(2), 150–161. https://doi.org/10.2174/1573406414666180524074648
Peiris, J. S. M., Yuen, K. Y., Osterhaus, A. D. M. E., & Stöhr, K. (2003). The Severe Acute Respiratory Syndrome. New England Journal of Medicine, 349(25), 2431–2441. https://doi.org/10.1056/NEJMra032498
Quiros Roldan, E., Biasiotto, G., Magro, P., & Zanella, I. (2020). The possible mechanisms of action of 4-aminoquinolines (chloroquine/hydroxychloroquine) against Sars-Cov-2 infection (COVID-19): A role for iron homeostasis? Pharmacological Research, 158, 104904. https://doi.org/10.1016/j.phrs.2020.104904
Ramos, J. M., González-Alcaide, G., & Gutiérrez, F. (2016). Bibliometric analysis of the Spanish scientific production in Infectious Diseases and Microbiology. Enfermedades Infecciosas y Microbiologia Clinica, 34(3), 166–176. https://doi.org/10.1016/j.eimc.2015.04.007
Rasool, N., Akhtar, A., & Hussain, W. (2020). Insights into the inhibitory potential of selective phytochemicals against Mpro of 2019-nCoV: a computer-aided study. Structural Chemistry, 31, 1777-1783. https://doi.org/10.1007/s11224-020-01536-6
Roa-Linares, V. C., Brand, Y. M., Agudelo-Gomez, L. S., Tangarife-Castaño, V., Betancur-Galvis, L. A., Gallego-Gomez, J. C., & González, M. A. (2016). Anti-herpetic and anti-dengue activity of abietane ferruginol analogues synthesized from (+)-dehydroabietylamine. European Journal of Medicinal Chemistry, 108, 79–88. https://doi.org/10.1016/j.ejmech.2015.11.009
Ryu, Y. B., Jeong, H. J., Kim, J. H., Kim, Y. M., Park, J. Y., Kim, D., Naguyen, T. T. H., Park, S. J., Chang, J. S., Park, K. H., Rho, M. C., & Lee, W. S. (2010). Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorganic and Medicinal Chemistry, 18(22), 7940–7947. https://doi.org/10.1016/j.bmc.2010.09.035
Ryu, Y. B., Park, S. J., Kim, Y. M., Lee, J. Y., Seo, W. D., Chang, J. S., Park, K. H., Rho, M. C., & Lee, W. S. (2010). SARS-CoV 3CLpro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii. Bioorganic and Medicinal Chemistry Letters, 20(6), 1873–1876. https://doi.org/10.1016/j.bmcl.2010.01.152
Sampangi-Ramaiah, M.H., Vishwakarma, R., & Shaanker, R.U. (2020). Molecular docking analysis of selected natural products from plants for inhibition of SARS-CoV-2 main protease. Current Science, 118(7), 1087–1092. http://sts.bioe.uic.edu/castp/index.html?3igg
Schoeman, D., & Fielding, B. C. (2019). Coronavirus envelope protein: Current knowledge. Virology Journal, 16(1), 1–22. https://doi.org/10.1186/s12985-019-1182-0
Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., Geng, Q., Auerbach, A., & Li, F. (2020). Structural basis of receptor recognition by SARS-CoV-2. Nature, 581(7807). https://doi.org/10.1038/s41586-020-2179-y
Song, Y. H., Kim, D. W., Curtis-Long, M. J., Yuk, H. J., Wang, Y., Zhuang, N., Lee, K. H., Jeon, K. S., & Park, K. H. (2014). Papain-like protease (PLpro) inhibitory effects of cinnamic amides from Tribulus terrestris fruits. Biological and Pharmaceutical Bulletin, 37(6), 1021–1028. https://doi.org/10.1248/bpb.b14-00026
Tariq, S., Wani, S., Rasool, W., Shafi, K., Bhat, M. A., Prabhakar, A., Shalla, A. H., & Rather, M. A. (2019). A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microbial Pathogenesis, 134, 103580. https://doi.org/10.1016/j.micpath.2019.103580
Thabti, I., Albert, Q., Philippot, S., Dupire, F., Westerhuis, B., Fontanay, S., Risler, A., Kassab, T., Elfalleh, W., Aferchichi, A., & Varbanov, M. (2020). Advances on Antiviral Activity of Morus spp. Plant Extracts: Human Coronavirus and Virus-Related Respiratory Tract Infections in the Spotlight. Molecules, 25(8), 1876. https://doi.org/10.3390/molecules25081876
Thuy, B. T. P., My, T. T. A., Hai, N. T. T., Hieu, L. T., Hoa, T. T., Thi Phuong Loan, H., Triet, N. T., Anh, T. T. Van, Quy, P. T., Tat, P. Van, Hue, N. Van, Quang, D. T., Trung, N. T., Tung, V. T., Huynh, L. K., & Nhung, N. T. A. (2020). Investigation into SARS-CoV-2 Resistance of Compounds in Garlic Essential Oil. ACS Omega, 5(14), 8312–8320. https://doi.org/10.1021/acsomega.0c00772
Vellingiri, B., Jayaramayya, K., Iyer, M., Narayanasamy, A., Govindasamy, V., Giridharan, B., Ganesan, S., Venugopal, A., Venkatesan, D., Ganesan, H., Rajagopalan, K., Rahman, P. K. S. M., Cho, S. G., Kumar, N. S., & Subramaniam, M. D. (2020). COVID-19: A promising cure for the global panic. Science of the Total Environment, 725, 138277. https://doi.org/10.1016/j.scitotenv.2020.138277
Von Itzstein, M., Wu, W. Y., Kok, G. B., Pegg, M. S., Dyason, J. C., Jin, B., Phan, T. Van, Smythe, M. L., White, H. F., Oliver, S. W., Colman, P. M., Varghese, J. N., Ryan, D. M., Woods, J. M., Bethell, R. C., Hotham, V. J., Cameron, J. M., & Penn, C. R. (1993). Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature, 363(6428), 418–423. https://doi.org/10.1038/363418a0
Wahedi, H. M., Ahmad, S., & Abbasi, S. W. (2020). Stilbene-based natural compounds as promising drug candidates against COVID-19. Journal of Biomolecular Structure and Dynamics, 1–10. https://doi.org/10.1080/07391102.2020.1762743
Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H., Cheng, Z., Xiong, Y., Zhao, Y., Li, Y., Wang, X., & Peng, Z. (2020). Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA - Journal of the American Medical Association, 323(11), 1061–1069. https://doi.org/10.1001/jama.2020.1585
Wen, C. C., Kuo, Y. H., Jan, J. T., Liang, P. H., Wang, S. Y., Liu, H. G., Lee, C. K., Chang, S. T., Kuo, C. J., Lee, S. S., Hou, C. C., Hsiao, P. W., Chien, S. C., Shyur, L. F., & Yang, N. S. (2007). Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. Journal of Medicinal Chemistry, 50(17), 4087–4095. https://doi.org/10.1021/jm070295s
Weng, J. R., Lin, C. S., Lai, H. C., Lin, Y. P., Wang, C. Y., Tsai, Y. C., Wu, K. C., Huang, S. H., & Lin, C. W. (2019). Antiviral activity of Sambucus FormosanaNakai ethanol extract and related phenolic acid constituents against human coronavirus NL63. Virus Research, 273, 197767. https://doi.org/10.1016/j.virusres.2019.197767
Yin, D., & Chen, K.L. (2009). Study on the inhibitory action on CVB3 replication in vitro by the extracts from Selaginella moelledorfii Hieron. Chinese Journal of Hospital Pharmacy, 29, 349–352. http://en.cnki.com.cn/Article_en/CJFDTotal-ZGYZ200904004.htm
Yu, J. wang, Wang, L., & Bao, L. dao. (2020). Exploring the active compounds of traditional Mongolian medicine in intervention of novel coronavirus (COVID-19) based on molecular docking method. Journal of Functional Foods, 71. https://doi.org/10.1016/j.jff.2020.104016
Yu, R., Chen, L., Lan, R., Shen, R., & Li, P. (2020). Computational screening of antagonists against the SARS-CoV-2 (COVID-19) coronavirus by molecular docking. International Journal of Antimicrobial Agents, 106012. https://doi.org/10.1016/j.ijantimicag.2020.106012
Zhang, D. hai, Wu, K. lun, Zhang, X., Deng, S. qiong, & Peng, B. (2020). In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. Journal of Integrative Medicine, 18(2), 152–158. https://doi.org/10.1016/j.joim.2020.02.005
Zheng, M., & Song, L. (2020). Novel antibody epitopes dominate the antigenicity of spike glycoprotein in SARS-CoV-2 compared to SARS-CoV. Cellular and Molecular Immunology, 17(5), 536–538. https://doi.org/10.1038/s41423-020-0385-z
Zhou, Y., Lu, K., Pfefferle, S., Bertram, S., Glowacka, I., Drosten, C., Pöhlmann, S., & Simmons, G. (2010). A Single Asparagine-Linked Glycosylation Site of the Severe Acute Respiratory Syndrome Coronavirus Spike Glycoprotein Facilitates Inhibition by Mannose-Binding Lectin through Multiple Mechanisms. Journal of Virology, 84(17), 8753–8764. https://doi.org/10.1128/jvi.00554-10
Zhuang, M., Jiang, H., Suzuki, Y., Li, X., Xiao, P., Tanaka, T., Ling, H., Yang, B., Saitoh, H., Zhang, L., Qin, C., Sugamura, K., & Hattori, T. (2009). Procyanidins and butanol extract of Cinnamomi Cortex inhibit SARS-CoV infection. Antiviral Research, 82(1), 73–81. https://doi.org/10.1016/j.antiviral.2009.02.001