Degradation of an Antibiotic from the Fluoroquinolone Group with a New Graphitic Carbon Nitride Photocatalyst
DOI:
https://doi.org/10.33936/revbasdelaciencia.v8i2.5703Palabras clave:
ofloxacin, water treatment, advanced oxidation processes, graphitic carbon nitride, heterogeneous photocatalysis.Resumen
Ofloxacin (OFL), a fluoroquinolone, is an antibiotic found in hospital wastewater, groundwater, and other water bodies. Its occurrence in water results in several environmental problems, such as the emergence of antibiotic-resistant bacteria. This research is focused on determining the viability of removing and mineralizing OFL by photocatalysis under visible radiation with a graphitic carbon nitride photocatalyst (GCNP) synthesized from the pyrolysis of urea and calcium oxalate at 600°C. The photocatalyst was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Moreover, the point of zero charge (PZC) of the photocatalyst was determined, and the adsorption isotherms were obtained. The photocatalytic activity of this new material was tested with a synthetic aqueous solution of OFL (20 mg/L) exposed to visible radiation. Three pH values (5, 7, and 10) and three doses of H2O2 (41.7, 83.3, and 333.2 mg/L) were considered. The achieved mineralization was evaluated through the decrease in the content of total organic carbon (TOC). The highest degradation of OFL was 23.9% after 40 min, with an initial concentration of H2O2 of 83.3 mg/L and a pH value of 10. It was confirmed that the reaction follows a kinetics of pseudo-first order.
Descargas
Citas
Alexander, J., Knopp, G., Dötsch, A., Wieland, A., & Schwartz, T. (2016). Ozone treatment of conditioned wastewater selects antibiotic resistance genes, opportunistic bacteria, and induce strong population shifts. Science of the Total Environment, 559, 103-112. doi:10.1016/j.scitotenv.2016.03.154.
Allen, H. K., Donato, J., Wang, H. H., Cloud-Hansen, K. A., Davies, J., & Handelsman, J. (2010). Call of the wild: antibiotic resistance genes in natural environments. Nature reviews microbiology, 8(4), 251-259. https://doi.org/10.1038/nrmicro2312
Al-Omar, M. A. (2009). Ofloxacin. In Profiles of drug substances, excipients and related methodology (Vol. 34, pp. 265-298). Academic Press. https://doi.org/10.1016/S1871-5125(09)34006-6
Andersson, D. I., & Hughes, D. (2014). Microbiological effects of sublethal levels of antibiotics. Nature Reviews Microbiology, 12(7), 465-478. https://doi.org/10.1038/nrmicro3270
Altamirano Briones, A., Cóndor Guevara, I., Mena, D., Espinoza, I., Sandoval-Pauker, C., Ramos Guerrero, L., ... & Muñoz Bisesti, F. (2020). Degradation of meropenem by heterogeneous photocatalysis using TiO2/fiberglass substrates. Catalysts, 10(3), 344. https://doi.org/10.3390/catal10030344
Bayan, E. M., Pustovaya, L. E., & Volkova, M. G. (2021). Recent advances in TiO2-based materials for photocatalytic degradation of antibiotics in aqueous systems. Environmental Technology & Innovation, 24, 101822. https://doi.org/10.1016/j.eti.2021.101822.
Blondeau, J. M. (2004). Fluoroquinolones: mechanism of action, classification, and development of resistance. Survey of ophthalmology, 49(2), S73-S78. https://doi.org/10.1016/j.survophthal.2004.01.005.
Charuaud, L., Jarde, E., Jaffrezic, A., Thomas, M. F., & Le Bot, B. (2019). Veterinary pharmaceutical residues from natural water to tap water: sales, occurrence and fate. Journal of hazardous materials, 361, 169-186. https://doi.org/10.1016/j.jhazmat.2018.08.075.
Chen, L., Lang, H., Liu, F., Jin, S., & Yan, T. (2018). Presence of antibiotics in shallow groundwater in the northern and southwestern regions of China. Groundwater, 56(3), 451-457. https://doi.org/10.1111/gwat.12596
Chen, Y., Lu, W., Wang, X., & Chen, W. (2018). Graphitic carbon nitride embedded in hot-melt adhesive polyester and hydrophilic cellulose blend fibers for the efficient elimination of antibiotics under solar irradiation. Applied Surface Science, 453, 110-119. https://doi.org/10.1016/j.apsusc.2018.04.188.
Cui, Y., Ding, Z., Liu, P., Antonietti, M., Fu, X., & Wang, X. (2012). Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants. Physical Chemistry Chemical Physics, 14(4), 1455-1462. DOI https://doi.org/10.1039/C1CP22820J
Dong, G., Zhang, Y., Pan, Q., & Qiu, J. (2014). A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 20, 33-50. https://doi.org/10.1016/j.jphotochemrev.2014.04.002.
Elmolla, E. S., & Chaudhuri, M. (2010). Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination, 252(1-3),46-52. https://doi.org/10.1016/j.desal.2009.11.003.
Fallah, Z., Zare, E. N., Ghomi, M., Ahmadijokani, F., Amini, M., Tajbakhsh, M., ... & Varma, R. S. (2021). Toxicity and remediation of pharmaceuticals and pesticides using metal oxides and carbon nanomaterials. Chemosphere, 275, 130055. https://doi.org/10.1016/j.psep.2017.05.011.
Grenni, P., Ancona, V., & Caracciolo, A. B. (2018). Ecological effects of antibiotics on natural ecosystems:Areview. MicrochemicalJournal, 136,25-39.doi:10.1016/j.microc.2017.02.006.
Ismael, M. (2020). A review on graphitic carbon nitride (g-C3N4) based nanocomposites: synthesis, categories, and their application in photocatalysis. Journal of Alloys and Compounds, 846, 156446. https://doi.org/10.1016/j.jallcom.2020.156446
Kong, Q., He, X., Shu, L., & Miao, M. S. (2017). Ofloxacin adsorption by activated carbon derived from luffa sponge: kinetic, isotherm, and thermodynamic analyses. Process Safety and Environmental Protection, 112, 254-264. https://doi.org/10.1016/j.psep.2017.05.011
Kosmulski, M. (2009). pH-dependent surface charging and points of zero charge. IV. Update and new approach. Journal of colloid and interface science, 337(2), 439-448. https://doi.org/10.1016/j.cis.2017.10.005.
Laverde-Cerda, E., Altamirano-Briones, A., Zárate-Pozo, P., Sandoval-Pauker, C., Ramos-Guerrero, L., Muñoz-Bisesti, F., & Vargas-Jentzsch, P. (2020). Iron removal for kinetic studies on Fenton treatments: A new approach based on ferrocyanide. Revista Mexicana de Ingeniería Química, 19(1), 159-164. Doi: 10.24275/rmiq/Cat545
Lewis, J. M. T., Eigenbrode, J. L., Wong, G. M., McAdam, A. C., Archer, P. D., Sutter, B., ... & Mahaffy, P. R. (2021). Pyrolysis of oxalate, acetate, and perchlorate mixtures and the implications for organic salts on Mars. Journal of Geophysical Research: Planets, 126(4), e2020JE006803. https://doi.org/10.1029/2020JE006803
Liu, J., Zhang, T., Wang, Z., Dawson, G., & Chen, W. (2011). Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. Journal of Materials Chemistry, 21(38), 14398-14401. doi:10.1039/c1jm12620b
Liu, L., Chen, Z., Zhang, J., Shan, D., Wu, Y., Bai, L., & Wang, B. (2021). Treatment of industrial dye wastewater and pharmaceutical residue wastewater by advanced oxidation processes and its combination with nanocatalysts: A review. Journal of Water Process Engineering, 42, 102122. https://doi.org/10.1016/j.jwpe.2021.102122.
Liu, X., Lu, S., Guo, W., Xi, B., & Wang, W. (2018). Antibiotics in the aquatic environments: a review of lakes, China. Science of the Total Environment, 627, 1195-1208. doi:10.1016/j.scitotenv.2018.01.271.
Ma, Y., Li, M., Wu, M., Li, Z., & Liu, X. (2015). Occurrences and regional distributions of 20 antibiotics in water bodies during groundwater recharge. Science of the Total Environment, 518, 498-506. https://doi.org/10.1016/j.scitotenv.2015.02.100
Manaia, C. M., Rocha, J., Scaccia, N., Marano, R., Radu, E., Biancullo, F., ... & Nunes, O. C. (2018). Antibiotic resistance in wastewater treatment plants: Tackling the black box. Environment international, 115, 312-324. https://doi.org/10.1016/j.envint.2018.03.044.
Michael, I., Rizzo, L., McArdell, C. S., Manaia, C. M., Merlin, C., Schwartz, T., ... & Fatta-Kassinos, D. J. W. R. (2013). Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water research, 47(3), 957-995. https://doi.org/10.1016/j.watres.2012.11.027
Ni, M., & Ratner, B. D. (2008). Differentiating calcium carbonate polymorphs by surface analysis techniques—an XPS and TOF‐SIMS study. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, 40(10), 1356-1361. https://doi.org/10.1002/sia.2904
Peña-Guzmán, C., Ulloa-Sánchez, S., Mora, K., Helena-Bustos, R., Lopez-Barrera, E., Alvarez, J., & Rodriguez-Pinzón, M. (2019). Emerging pollutants in the urban water cycle in Latin America: A review of the current literature. Journal of environmental management, 237, 408-423. https://doi.org/10.1016/j.jenvman.2019.02.100
Picho-Chillán, G., Dante, R. C., Muñoz-Bisesti, F., Martín-Ramos, P., Chamorro-Posada, P., Vargas-Jentzsch, P., ... & Rutto, D. (2019). Photodegradation of Direct Blue 1 azo dye by polymeric carbon nitride irradiated with accelerated electrons. Materials Chemistry and Physics, 237, 121878. https://doi.org/10.1016/j.matchemphys.2019.121878
Qin, D., Lu, W., Wang, X., Li, N., Chen, X., Zhu, Z., & Chen, W. (2016). Graphitic carbon nitride from burial to re-emergence on polyethylene terephthalate nanofibers as an easily recycled photocatalyst for degrading antibiotics under solar irradiation. ACS Applied Materials & Interfaces, 8(39), 25962-25970. DOI: 10.1021/acsami.6b07680.
Redgrave, L. S., Sutton, S. B., Webber, M. A., & Piddock, L. J. (2014). Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends in microbiology, 22(8), 438-445. https://doi.org/10.1016/j.tim.2014.04.007.
Sandoval, C., Molina, G., Vargas Jentzsch, P., Perez, J., & Munoz, F. (2017). Photocatalytic degradation of azo dyes over semiconductors supported on polyethylene terephthalate and polystyrene substrates. Journal of Advanced Oxidation Technologies, 20(2), 20170006. https://doi.org/10.1515/jaots-2017-0006
Su, Q., Li, J., Yuan, H., Wang, B., Wang, Y., Li, Y., & Xing, Y. (2022). Visible-light-driven photocatalytic degradation of ofloxacin by g-C3N4/NH2-MIL-88B (Fe) heterostructure: Mechanisms, DFT calculation, degradation pathway and toxicity evolution. Chemical Engineering Journal, 427, 131594.
Su, F., Mathew, S. C., Lipner, G., Fu, X., Antonietti, M., Blechert, S., & Wang, X. (2010). mpg-C3N4-catalyzed selective oxidation of alcohols using O2 and visible light. Journal of the American Chemical Society, 132(46), 16299-16301. https://doi.org/10.1021/ja102866p
Szymańska, U., Wiergowski, M., Sołtyszewski, I., Kuzemko, J., Wiergowska, G., & Woźniak, M. K. (2019). Presence of antibiotics in the aquatic environment in Europe and their analytical monitoring: Recent trends and perspectives. Microchemical Journal, 147, 729-740 https://doi.org/10.1016/j.microc.2019.04.003.
Van Doorslaer, X., Dewulf, J., Van Langenhove, H., & Demeestere, K. (2014). Fluoroquinolone antibiotics: an emerging class of environmental micropollutants. Science of the Total Environment, 500, 250-269. https://doi.org/10.1016/j.scitotenv.2014.08.075.
Van Wieren, E. M., Seymour, M. D., & Peterson, J. W. (2012). Interaction of the fluoroquinolone antibiotic, ofloxacin, with titanium oxide nanoparticles in water: Adsorption and breakdown. Science of the Total Environment, 441, 1-9. https://doi.org/10.1016/j.scitotenv.2012.09.067.
Wang, H., Li, X., Zhao, X., Li, C., Song, X., Zhang, P., & Huo, P. (2022). A review on heterogeneous photocatalysis for environmental remediation: From semiconductors to modification strategies. Chinese Journal of Catalysis, 43(2), 178-214. https://doi.org/10.1016/S1872-2067(21)63910-4.
Wang, X., Lu, W., Chen, Y., Li, N., Zhu, Z., Wang, G., & Chen, W. (2018). Effective elimination of antibiotics over hot-melt adhesive sheath-core polyester fiber supported graphitic carbon nitride under solar irradiation. Chemical Engineering Journal, 335, 82-93. https://doi.org/10.1016/j.cej.2017.10.061
Wen, J., Xie, J., Chen, X., & Li, X. (2017). A review on g-C3N4-based photocatalysts. Applied surface science, 391, 72-123. https://doi.org/10.1016/j.apsusc.2016.07.030.
Xie, A., Dai, J., Chen, X., He, J., Chang, Z., Yan, Y., & Li, C. (2016). Hierarchical porous carbon materials derived from a waste paper towel with ultrafast and ultrahigh performance for adsorption of tetracycline. RSC advances, 6(77), 72985-72998. DOI: https://doi.org/10.1039/C6RA17286E
Yang, Y., Song, W., Lin, H., Wang, W., Du, L., & Xing, W. (2018). Antibiotics and antibiotic resistance genes in global lakes: a review and meta-analysis. Environment international, 116, 60-73. doi:10.1016/j.envint.2018.04.011.
Yu, Y., Zhu, Z., Fan, W., Liu, Z., Yao, X., Dong, H., ... & Huo, P. (2018). Making of a metal-free graphitic carbon nitride composites based on biomass carbon for efficiency enhanced tetracycline degradation activity. Journal of the Taiwan Institute of Chemical Engineers, 89, 151-161. https://doi.org/10.1016/j.jtice.2018.04.034
Publicado
Número
Sección
Licencia
Derechos de autor 2023 Alejandro Altamirano, Iván Cóndor Guevara, Katherine Terán, Isabel Espinoza , Luis Ramos Guerrero, Wilson Mamani Aguilar , Christian Sandoval Pauker , Paul Vargas Jentzsch, Florinella Muñoz Bisesti

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.