Estudio de los Sistemas de Espectro Esparcido por Salto de Frecuencia en FPGA

  • Alejandro Arteaga
  • Miguel Angel Bring
  • Jorge Torres Gómez

Resumen

Los sistemas de espectro esparcido por salto de frecuencia (FHSS) son implementados en la actualidad
para brindar mayor robustez y seguridad en las comunicaciones. Con base en el incremento de ancho de
banda que experimentan las señales FHSS estas se emplean para coexistir con otras comunicaciones con
un mínimo de interferencia. Las aplicaciones de su implementación se reportan de carácter comercial y
militar en comunicaciones GSM, Bluetooth, entre aeronaves o para radios tácticos. En la actualidad dado
el creciente incremento de tecnologías digitales como los FPGAs y los circuitos integrados se reportan
diversas soluciones con el empleo de estos dispositivos. El presente trabajo aborda la descripción de
estos esquemas en FPGA. Se describe por diagramas en bloque los principales esquemas así como las
principales tecnologías empleadas.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

Citas

[1] N. R. Ghate y K. V. Kale. “Smart home safety device using frequency hopping approach based on GSM generation”. En: 2017 1st International Conference on Intelligent Systems and Information Management (ICISIM). 2017 1st International Conference on Intelligent Systems and Information Management (ICISIM). Oct. de 2017, págs. 341-347. doi: 10.1109/ICISIM.2017.8122196.

[2] J. So e Y. Kim. “Interference-aware frequency hopping for Bluetooth in crowded Wi-Fi networks”. En: Electronics Letters 52.17 (2016), págs. 1503-1505. issn: 0013-5194. doi: 10.1049/el.2016. 1773.

[3] S. Al-Sarawi y col. “Internet of Things (IoT) communication protocols: Review”. En: 2017 8th International Conference on Information Technology (ICIT). 2017 8th International Conference on Information Technology (ICIT). Mayo de 2017, págs. 685-690. doi: 10.1109/ICITECH.2017. 8079928.

[4] Gang Wang y col. “Spread spectrum design for aeronautical communication system with radio frequency interference”. En: 2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC). 2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC). Sep. de 2015, págs. 1-26. doi: 10.1109/DASC.2015.7311549.

[5] V. Kafedziski y S. Pecov. “Implementation of a high resolution stepped frequency radar on a USRP”. En: 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications (SIKS). 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications SIKS). Oct. de 2017, págs. 236-239. doi: 10.1109/ SKS.2017.8246271.

[6] Multi-Carrier Spread Spectrum & Related Topics. Softcover reprint of the original 1st ed. 2000 edition. Boston, MA, 2012. isbn: 978-1-4613-7010-9.

[7] G. F. Elmasry. “The progress of tactical radios from legacy systems to cognitive radios”. En: IEEE Communications Magazine 51.10 (oct. de 2013), págs. 50-56. issn: 0163-6804. doi: 10.1109/MCOM. 2013.6619565.

[8] R. A. Scholtz. “The Origins of Spread-Spectrum Communications”. En: IEEE Transaction on Communications COM-30.5 (1982).

[9] N. Wiener. Extrapolation, Interpolation and Smoothing of Stationary Time Series. New York: John Wiley & Sons, 1950.

[10] C.E. Shannon. “A Mathematical Theory of Communication”. En: Bell System Tech. J. 27 (1948), págs. 379-423.

[11] W. Wang y Z. Wang. “FPGA implementation of rapid PN code acquisition using iterative message passing algorithms”. En: IEEE Aerospace and Electronic Systems Magazine 29.6 (jun. de 2014), págs. 13-23. issn: 0885-8985. doi: 10.1109/MAES.2014.120228.

[12] M. Rakhshanfar, M. Teimouri y Z. HassanShahi. “Implementation of Software Radio Based on PC and FPGA”. En: 2008 4th IEEE International Conference on Circuits and Systems for Commu-nications. 2008 4th IEEE International Conference on Circuits and Systems for Communications. Mayo de 2008, págs. 633-637. doi: 10.1109/ICCSC.2008.140.

[13] H. Lu y B. Lian. “The Design and Implementation of Spread Spectrum Base-Band System Based on Software Radio”. En: 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing. 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing. Oct. de 2008, págs. 1-4. doi: 10.1109/WiCom.2008.331.

[14] E. Inaty y R. Ayoubi. “FPGA-based transmitter-receiver architecture of an overlapped FFH-CDMA system: design and simulation”. En: 2006 IEEE International Symposium on Circuits and Systems. 2006 IEEE International Symposium on Circuits and Systems. Mayo de 2006, 4 pp.-2800. doi: 10.1109/ISCAS.2006.1693205.

[15] G. Bouzid y col. “FPGA implementation of FHSS-FSK modulator”. En: 2008 3rd International Conference on Design and Technology of Integrated Systems in Nanoscale Era. 2008 3rd International Conference on Design and Technology of Integrated Systems in Nanoscale Era. Mar. de 2008, págs. 1-5. doi: 10.1109/DTIS.2008.4540261.

[16] Bernard Sklar. Digital Communications, Fundamentals and Applications. Second. New Jersey: Prentice Hall, 2001. 953 pagetotals. isbn: 0130847887.

[17] A. B. Carlson, P. B. Crilly y J. C. Rutledge. Communication Systems: An introduction to Signals and Noise in Electrical Communication. Fourth Edition. New York, NY, USA: McGraw-Hill, 2002. 853 pagetotals. isbn: 0-07-011127-8.

[18] M. K. Simon y col. Spread Spectrum Communications Handbook. McGraw-Hill Inc., 2002.

[19] J. S. Min y H. Samueli. “Analysis and design of a frequency-hopped spread-spectrum transceiver for wireless personal communications”. En: IEEE Transactions on Vehicular Technology 49.5 (sep. de 2000), págs. 1719-1731. issn: 0018-9545. doi: 10.1109/25.892577.
Publicado
2018-07-31
Sección
Artículos