Validación del sensor Kinect como herramienta de captura para la realización de estudios de desempeño postural.

  • Andrés Henrriquez Pérez
  • Roberto Giordano Estrada Leyva
  • Reynaldo Solorzano Pérez

Resumen

Assessing the degree of a person’s postural performance constitutes a high-value clinical and therapeutic
tool. Different tests and clinical scales are applied to quantify the postural performance. The different
technologies used to study the postural performance and the limitations of the hardware used in the
captures cause that the results can not be objectively compared. On the other hand, the high costs of
specialized laboratories have led to an increase in the use of the Kinect sensor to assess posture. However,
this is not yet fully accepted as a clinical tool by the scientific community. In this work, an experiment
was conducted to verify if the Kinect is sensitive enough to detect the differences between two age
groups (older and younger) with respect to their postural performance. The application of hypothesis
tests allowed to verify that there are significant differences between both groups, which shows that the
Kinect sensor can be used to perform studies of postural performance.



Valorar el grado de rendimiento postural de una persona constituye una herramienta clínica y terapéutica
de alto valor. Para cuantificar el rendimiento postural se aplican diferentes exámenes y escalas clínicas. Las
diferentes tecnologías empleadas para estudiar el rendimiento postural y las limitaciones del hardware
empleado en las capturas provoca que los resultados no se puedan comparar objetivamente. Por otro
lado, los altos costos de laboratorios especializados han provocado un aumento en la utilización del
sensor Kinect para evaluar la postura. Sin embargo, éste no es aun completamente aceptado como una
herramienta clínica por la comunidad científica. En este trabajo se realizó un experimento para comprobar
si el Kinect es lo suficientemente sensible como para detectar la diferencias existentes entre dos grupos
etarios (adultos mayores y jóvenes) con respecto a su rendimiento postural. La aplicación de pruebas de
hipótesis permitió comprobar que existen diferencias significativas entre ambos grupos, lo cual demuestra
que el sensor Kinect puede ser empleado para realizar estudios de rendimiento postural.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

Citas

[1] D. J. Lanska, The Romberg sign and early instruments for measuring postural sway, in: Seminars in neurology, Vol. 22, [New York]: Thieme-Stratton Inc.,[c1981-, 2002, pp. 409–418.

[2] M. Duarte, S. M. Freitas, Revision of posturography based on force plate for balance evaluation, Brazilian Journal of physical therapy 14 (3) (2010) 183–192.

[3] T. Paillard, F. Noé, Techniques and Methods for Testing the Postural Function in Healthy and Pathological Subjects, BioMed research international 2015.

[4] J. Massion, Postural control system, Current opinion in neurobiology 4 (6) (1994) 877–887.

[5] C. Bruttini, R. Esposti, F. Bolzoni, A. Vanotti, C. Mariotti, P. Cavallari, Temporal disruption of upper-limb anticipatory postural adjustments in cerebellar ataxic patients, Experimental brain research 233 (1) (2015) 197–203.

[6] G. G. Tangen, K. Engedal, A. Bergland, T. A. Moger, A. M. Mengshoel, Relationships between balance and cognition in patients with subjective cognitive impairment, mild cognitive impairment, and Alzheimer disease, Physical therapy 94 (8) (2014) 1123–1134.

[7] C. E. Hiller, E. J. Nightingale, C.-W. C. Lin, G. F. Coughlan, B. Caulfield, E. Delahunt, Characteristics of people with recurrent ankle sprains: a systematic review with metaanalysis, British journal of sports medicine (2011) bjsports77404.

[8] B. Schoch, A. Hogan, E. R. Gizewski, D. Timmann, J. Konczak, Balance control in sitting and standing in children and young adults with benign cerebellar tumors, The Cerebellum 9 (3) (2010) 324–335.

[9] N. Chastan, M. C. Do, F. Bonneville, F. Torny, F. Bloch, G. Westby, D. Dormont, Y. Agid, M.-L. Welter, Gait and balance disorders in Parkinson’s disease: impaired active braking of the fall of centre of gravity, Movement Disorders 24 (2) (2009) 188–195.

[10] L. Borel, C. Lopez, P. Péruch, M. Lacour, Vestibular syndrome: a change in internal spatial representation, Neurophysiologie Clinique/Clinical Neurophysiology 38 (6) (2008) 375–389.

[11] T. R. Han, N. J. Paik, M. S. Im, Quantification of the path of center of pressure (COP) using an F-scan in-shoe transducer, Gait & posture 10 (3) (1999) 248–254.

[12] T. Paillard, Vieillissement et condition physique, Ellipses, 2009.

[13] P. Schubert, M. Kirchner, Ellipse area calculations and their applicability in posturography, Gait & posture 39 (1) (2014) 518–522.

[14] S. L. Pavão, G. S. Nunes, A. N. Santos, N. A. Rocha, Relationship between static postural control and the level of functional abilities in children with cerebral palsy, Brazilian journal of physical therapy 18 (4) (2014) 300–307.

[15] E. Golomer, P. Dupui, P. Bessou, Spectral frequency analysis of dynamic balance in healthy and injured athletes, Archives internationales de physiologie, de biochimie et de biophysique 102 (3) (1994) 225–229.

[16] T. Paillard, C. Lafont, M. Costes-Salon, D. Riviere, P. Dupui, Effects of brisk walking on static and dynamic balance, locomotion, body composition, and aerobic capacity in ageing healthy active men., International journal of sports medicine 25 (7) (2004) 539–546.

[17] E. Gurfinkel, Physical foundations of stabilography., Agressologie: revue internationale de physio-biologie et de pharmacologie appliquees aux effets de lágression 14 (Spec No C) (1973) 9–13.

[18] D. A. Winter, ABC (anatomy, biomechanics and control) of balance during standing and walking, Waterloo Biomechanics, 1995, 00428.

[19] Microsoft, Kinect for windows. Human Interface Guidelines.

[20] Q. Wang, G. Kurillo, F. Ofli, R. Bajcsy, Evaluation of pose tracking accuracy in the first and second generations of Microsoft Kinect, in: Healthcare Informatics (ICHI), 2015 International Conference on, IEEE, 2015, pp. 380–389.

[21] R. A. Clark, Y.-H. Pua, K. Fortin, C. Ritchie, K. E. Webster, L. Denehy, A. L. Bryant, Validity of the Microsoft Kinect for assessment of postural control, Gait & posture 36 (3) (2012) 372–377.

[22] L. Yeung, K. C. Cheng, C. Fong, W. C. Lee, K.-Y. Tong, Evaluation of the Microsoft Kinect as a clinical assessment tool of body sway, Gait & posture 40 (4) (2014) 532–538, 00021.

[23] The balance error scoring system. URL https://s-media-cache-ak0.pinimg.com/736x/0b/89/7c/0b897cdbfb40e435ab0de4fac7a2239d.jpg
Publicado
2018-07-31
Sección
Artículos