Are 45 years of reproductive isolation enough to prevent the amplification of mitochondrial genes in the Pacific oyster?

¿Son suficientes 45 años de aislamiento reproductivo para evitar la amplificación de genes mitocondriales en el ostión del Pacífico?

  • Felipe Reynaga Franco Universidad de Sonora - México
  • José Manuel Grijalva Chon Universidad de Sonora - México
  • Jorge Eduardo Chávez Villalba Centro de Investigaciones Biológicas del Noroeste - México
  • Reina Castro Longoria Universidad de Sonora - México
  • José Alfredo Arreola Lizárraga Centro de Investigaciones Biológicas del Noroeste - México
  • Ramón Héctor Barraza Guardado Universidad de Sonora - México

Resumen

 
The Pacific oyster culture in Mexico began 45 years ago, first with spat imported from the USA and now with spat produced in several local hatcheries. Oyster farmers do not know the parameters that define the quality of the spat they buy, among them the level of genetic variability available in the lots offered. In order to evaluate and compare the genetic variability in spat produced by four Mexican hatcheries, an attempt was made to amplify and sequence the non-coding region and the ND5 gene of the oyster mitochondrial DNA with oligos reported in the scientific literature. The amplification of the non-coding region was not possible due to the bad design of the oligos. Despite the integrity of the extracted oyster DNA, the ND5 gene was not able to be amplified possibly due to the modification of the oligo recognition site in the gene. The generational separation of the oyster cultivated in Mexico from its original source population makes it necessary to obtain new mitochondrial sequences in order to design new oligos suitable for the populations established in Mexico.
 
Keywords: Crassostrea gigas, aquaculture, oyster culture, mitochondrial DNA, population genetics. 
 
Abstract
 
El cultivo del ostión del Pacífico en México inició hace 45 años, primero con semilla importada de los EUA y ahora con semilla producida en laboratorios locales. Los ostricultores no conocen los parámetros que definen la calidad de la semilla que ellos compran, como el nivel de la variabilidad genética disponible en los lotes ofertados. Con el fin de evaluar y comparar la variabilidad genética de la semilla producida en cuatro laboratorios mexicanos, se hizo un intento de amplificar y secuenciar la región no codificante y el gen ND5 mitocondriales del ostión con oligos reportados en la literatura científica. La amplificación de la región no codificante no fue posible debido al mal diseño de los oligos. A pesar de la integridad del ADN extraído de los ostiones, el gen ND5 no pudo ser amplificado debido posiblemente a la modificación del sitio de reconocimiento del oligo en ese gen. La separación generacional del ostión cultivado en México de su población fuente original hace necesario obtener nuevas secuencias mitocondriales para diseñar nuevos oligos adecuados a las poblaciones establecidas en México.
 
Palabras clave: Crassostrea gigas, acuacultura, ostricultura, ADN mitochondrial, genética de poblaciones.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

Citas

Allendorf, F.W., G. Luikart & S.N. Aitken. 2013. Conservation and the Genetics of Populations. Wiley-Blackwell. Chichester, UK.

Arinichi, F. & T. Okimoto. 2005. Sequence polymorphism in a novel noncoding region of Pacific oyster mitochondrial DNA. Journal of Applied Genetics. 46: 201-206.

Backeljau, T. 2018. Crassostrea gigas or Magallana gigas: A community-based scientific response. National Shellfisheries Association Quarterly Newsletter 2018(1): 3.

Barg, U.C. 1992. Guidelines for the promotion of environmental management of coastal aquaculture development. FAO Fisheries Technical Paper. No. 328. FAO. Rome. 122 p.
Bayne B.L., M. Ahrens, S.K. Allen, M. Anglès D'auriac, T. Backeljau, P. Beninger, R. Bohn, P. Boudry, J. Davis, T. Green, X. Guo, D. Hedgecock, A. Ibarra, P. Kingsley-Smith, M. Krause, C. Langdon, S. Lapègue, C. Li, D. Manahan, R. Mann, L. Perez-Paralle, E.N. Powell, P.D. Rawson, D. Speiser, J.L. Sanchez, S. Shumway & H. Wang. 2017. The proposed dropping of the genus Crassostrea for all Pacific cupped oysters and its replacement by a new genus Magallana: A dissenting view. Journal of Shellfish Research. 6: 545-547.

Brown, W.M., M. George Jr. & A.C. Wilson. 1979. Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences U.S.A. 76: 1967-1971.

Chávez-Villalba, J. 2014. Cultivo de ostión Crassostrea gigas: Análisis de 40 años de actividades en México. Hidrobiológica. 24: 175-190.

Correa, F., E. Collinsm, A. Oceguera, B. Cordero & D. Domínguez. 2004. Allozymic variation in the Pacific oyster Crassostrea gigas from San Quintín Bay, Baja California, Mexico. Ciencias Marinas. 30: 89–97.

Cruz, P., B. Yáñez-Jacome, A.M. Ibarra & J. Rangel-Becerril. 2007. Isolation and characterization of microsatellite loci in the Pacific pleasure oyster, Crassostrea corteziensis, and their cross-species amplification in four other oyster species. Molecular Ecology Notes. 7: 448–450.

De la Rosa-Vélez, J., M.T. Gutiérrez-Wing & R. Radilla-Camacho. 1991. El ostricultivo de Bahía de San Quintín, B.C. México; Aspectos genéticos. Ciencias Marinas. 17: 133-147.

Dégremont, L., B. Ernande, E. Bédier & P. Boudry. 2007. Summer mortality of hatchery-produced Pacific oyster spat (Crassostrea gigas). I. Estimation of genetic parameters for survival and growth. Aquaculture. 262: 41-53.

Enríquez-Espinoza, T.L. & J.M. Grijalva-Chon. 2010. Genetic variability of Crassostrea gigas and Crassostrea corteziensis from a hatchery in northwestern Mexico. Ciencias Marinas. 36: 333-344.

Ferris, S.D. & W.J. Berg. 1987. The utility of mitochondrial DNA in fish genetics and fishery management. En: Population Genetics and Fishery Management. N. Ryman y F. Utter (eds.), pp. 277-299. University of Washington Press. Seattle, USA.

Grijalva-Chon, J.M., O. Izaguirre-Castro, R. Castro-Longoria, M.A. López-Torres & F. Hoyos-Chairez. 2013. Variabilidad genética en ADN microsatélite de un nuevo linaje de ostión (Crassostrea gigas) en Sonora. Biotecnia. 15(1): 12-18.

Huvet, A., P. Boudry, M. Ohresser, C. Delsert & F. Bonhomme. 2000. Variable microsatellites in the Pacific Oyster Crassostrea gigas and other cupped oyster species. Animal Genetics. 31: 71-72.

Islas-Olivares, R. 1975. El ostión japonés (Crassostrea gigas) en Baja California. Ciencias Marinas. 2: 58-59.

Kawamura, K., T. Miyake, M. Obata, H. Aoki & A. Komaru. 2017. Population demography and genetic characteristics of the Pacific Oyster Crassostrea gigas in Japan. Biochemical Systematics and Ecology. 70: 211-221.

Launey, S. & D. Hedgecock. 2001. High genetic load in the Pacific oyster Crassostrea gigas. Genetics. 159: 255–265.
Le Roux, F., C. Audemard, A. Barnaud & F. Berthe. 1999. DNA probes as potential tools for the detection of Marteilia refringens. Marine Biotechnology. 1: 588–597.

Li, G., S. Hubert, K. Bucklin, V. Ribes & D. Hedgecock. 2003. Characterization of 79 microsatellite DNA markers in the Pacific oyster Crassostrea gigas. Molecular Ecology Notes. 3: 228–232.

Li, Q., H. Yu & R. Yu. 2006. Genetic variability assessed by microsatellites in cultured populations of the Pacific oyster (Crassostrea gigas) in China. Aquaculture. 259: 95–102.

Lynch, S.A., E. Dillane, J. Carlsson & A. Culloty. 2013. Development and assessment of a sensitive and cost-effective polymerase chain reaction to detect ostreid herpesvirus 1 and variants. Journal of Shellfish Research. 32: 657-664.

Magoulas, A., B. Gjetvag, V. Terzoglou & E. Zouros. 1998. The polymorphic microsatellites in the Japanese oyster, Crassostrea gigas (Thunberg). Animal Genetics. 29: 69-70.

Makhawi, A.M., X.B. Liu, S.R. Yang, & Q.Y. Liu. 2013. Genetic variations of ND5 gene of mtDNA in populations of Anopheles sinensis (Diptera: Culicidae) malaria vector in China. Parasites and Vectors. 6: 290.

McGoldbrick, D.J., D. Hedgecock, L. English, P. Baoprasertkul & R.D: Ward. 2000. The transmission of microsatellite alleles in Australian and North American stocks of the Pacific oyster (Crassostrea gigas): selection and null alleles. Journal of Shellfish Research. 19: 779-788.

Meistertzheim, A.L., S. Arnaud-Haond, P. Boudry & M.T. Thébault. 2013. Genetic structure of wild European populations of the invasive Pacific oyster Crassostrea gigas due to aquaculture practices. Marine Biology. 160: 453-463.

Ozaki, H. & Y. Fujio. 1985. Genetic differentiation in geographical populations of the Pacific Oyster (Crassostrea gigas) around Japan. Tohoku Journal of Agriculture Research. 36: 49-61.

Salvi, D., A. Macali & P. Mariottini. 2014. Molecular phylogenetics and systematics of the bivalve family ostreidae based on rRNA sequence-structure models and multilocus species tree. PLoS ONE 9: e108696.

Salvi, D. & P. Mariottini. 2017. Molecular taxonomy in 2D: a novel ITS2 rRNA sequence structure approach guides the description of the oysters’ subfamily Saccostreinae and the genus Magallana (Bivalvia: Ostreidae). Zoological Journal of the Linnean Society 179: 263–276.

Yang, R., Z. Yu, Z. Chen, X. Kong & J. Dai. 2000. Allozyme variation within Crassostrea plicatula and Crassostrea gigas from Shandong coastal waters. Fisheries China. 24: 130-133.

Yu, H. & Q. Li. 2012. Complete mitochondrial DNA sequence of Crassostrea nippona: comparative and phylogenomic studies on seven commercial Crassostrea species. Molecular Biology Reports. 39: 999-1009.

Yu, H., Q. Li, & R. Yu. 2008. Genetic differentiation between the oyster Crassostrea plicatula and Pacific oyster Crassostrea gigas populations in China assessed by microsatellite analysis. Fisheries Science. 74: 88–97.
Publicado
2019-12-31
Sección
Artículos