Influência de fatores ambientais na dinâmica do perifíton na aquicultura

Autores/as

  • Robério Mires de Freitas Universidade Federal do Ceará – UFC, Av. Mister Hull, s/n, Pici, CEP: 60455-760, Fortaleza-CE, Brasil.
  • Jéssica Lucinda Saldanha da Silva Universidade Federal do Ceará – UFC, Av. Mister Hull, s/n, Pici, CEP: 60455-760, Fortaleza-CE, Brasil.
  • Esau Aguiar Carvalho Universidade Federal do Ceará – UFC, Av. Mister Hull, s/n, Pici, CEP: 60455-760, Fortaleza-CE, Brasil.
  • Oscarina Viana De Sousa Universidade Federal do Ceará – UFC, Av. Mister Hull, s/n, Pici, CEP: 60455-760, Fortaleza-CE, Brasil.

DOI:

https://doi.org/10.33936/at.v4i2.4825

Palabras clave:

Comunidade perifítica, Qualidade de água, Alimento vivo, Biofilme, Microrganismos

Resumen

RESUMO | Com o crescimento da atividade aquícola e o aumento da entrada de resíduos orgânicos oriundos dos ambientes de cultivo em corpos de águas naturais, o desenvolvimento de técnicas que minimizem os impactos da aquicultura se faz necessário. Uma estratégia que vem mostrando resultados promissores na mitigação dos impactos negativos da aquicultura é a manipulação das comunidades microbianas naturais dos ecossistemas aquáticos. Essas comunidades utilizam as altas cargas de nutrientes para o seu desenvolvimento e o seu crescimento no meio é regulado por vários fatores naturais. Nesta revisão, os principais fatores ambientais que podem modificar a dinâmica e função do biofilme nos ambientes de cultivo, foram minunciosamente analisados. Diversos fatores categorizados como bióticos: parasitismo, predação e pastejo e abióticos: concentração de nutrientes, temperatura, pH, substratos, luz, velocidade de água e regime hidrológico foram apontados como determinantes para a colonização e estabelecimento do biofilme. Todavia, alguns fatores se demonstraram mais atuantes na dinâmica da comunidade, sendo possível distinguir aqueles que apresentam maior interferência no desenvolvimento e dinâmica da comunidade.

Descargas

La descarga de datos todavía no está disponible.

Citas

Anand, P. S. S., Balasubramanian, C. P., Christina, L., Kumar, S., Biwas, G., Ghoshal, T. K., Vijayasn, K. K. (2019). Substrate based black tiger shrimp, Penaeus monodon culture: Stocking density, aeration and their effect on growth performance, water quality and periphyton development. Aquaculture, 507:411–418. doi: 10.1016/j.aquaculture.2019.04.031

Anand, P. S. S., Kohli, M.P.S., Roy, S. D., Sundaray, J.K., Kumar, S., Sinha, A., Pailan, G.H., Sukham, M. K. (2013). Effect of dietary supplementation of periphyton on growth performance and digestive enzyme activities in Penaeus monodon. Aquaculture, 392:59–68. doi: 10.1016/j.aquaculture.2013.01.029

Asaduzzaman, M., Wahab, M. A., Verdegem, M. C.J., Adhikary, R. K., Rahman, S. M.S., Azim, M. E., Verreth, J. A.J. (2010). Effects of carbohydrate source for maintaining a high C:N ratio and fish driven re-suspension on pond ecology and production in periphyton-based freshwater prawn culture systems. Aquaculture, 301:37–46. doi: 10.1016/j.aquaculture.2010.01.025

Asaduzzaman, M., Wahab, M. A., Verdegem, M. C.J., Mondal, M. N., Azim, M. E. (2009). Effects of addition of tilapia Oreochromis niloticus and substrates for periphyton developments on pond ecology and production in C/N-controlled freshwater prawn Macrobrachium rosenbergii farming systems. Aquaculture, 287:371–380. doi: 10.1016/j.aquaculture.2008.11.011

Asaduzzaman, M., Wahab, M. A., Verdegem, M. C.J., Huque, S., Salam, M. A., Azim, M. A. (2008). C/N Ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium Rosenbergii production in ponds. Aquaculture, 280:117–123. doi:10.1016/j.aquaculture.2008.04.019

Audelo-Naranjo, J. M., Voltolina, D., Romero-Beltran, E. (2012). Culture of white shrimp (Litopenaeus vannamei Boone, 1931) with zero water exchange and no food addition: an eco friendly approach. Latin American Journal of Aquatic Research, 40:441–447. doi: 10.3856/vol40-issue2-fulltext-19

Audelo-Naranjo, J. M., Martinez-Córdova, L. R., Romero-Beltran, E. (2010). Nitrogen budget in intensive cultures of Litopenaeus vannamei in mesocosms, with zero water exchange and artificial substrates. Revista de biología marina y oceanografía, 45:519–524. doi: 10.4067/S0718-19572010000300017

Azim, M. E., Verdegem, M. C. J., Van-Dam, A. A., Beveridge, M. C. M. (2005). Periphyton ecology, exploitation and management. Editora CAB Internatinal. Wallingford, UK.

Azim, M. E., Wahab, M. A., Biswas, P. K., Asaeda, T., Fujino, T., Verdegem, C. J. (2004). The effect of periphyton substrate density on production in freshwater polyculture ponds. Aquaculture, 232:441–53.

doi:10.1016/j.aquaculture.2003.08.010

Azim, M. E., Verdegem, M. C. J., Khatoon, H., Wahab, M. A., Van-Dam, A. A., Beveridge, M. C. M. (2002a). A comparison of fertilization, feeding and three periphyton substrates for increasing fish production in freshwater pond aquaculture in Bangladesh. Aquaculture, 212:227-243. doi: 10.1016/S0044-8486(02)00093-5

Azim, M. E., Wahab, M. A., Verdegem, M. C. J., Van-Dam, A. A., Rooji, J. M. V., Beveridge, M. C. M. (2002b). The effects of artificial substrates on freshwater pond productivity and water quality and the implications for periphyton-based aquaculture. Aquatic Living Resources, 15:231-241. doi: 10.1016/S0990-7440(02)01179-8

Azim, M. E., Wahab, M. A., Van-Dam, A. A., Beveridge, M. C. M., Huisman, E. E., Verdegem, M. C. J. (2001). Optimization of stocking ratios of two indian major carps, Rohu (Labeo Rohita Ham.) and Catla (Catla Catla Ham.) in a periphyton-based aquaculture system. Aquaculture, 203:33-49. doi:10.1016/S0044-8486(01)00602-0

Ballester, E. L. C., Wasielesky-Jr, W., Cavalli, R. O., Abreu, P. C. (2007). Nursery of the pink shrimp Farfantepenaeus paulensis in cages with artificial substrates: Biofilm composition and shrimp performance. Aquaculture, 269:355–362. doi: 10.1016/j.aquaculture.2007.04.003

Bernot, R. J., Lamberti, G. A. (2008). Indirect effects of a parasite on a benthic community: An experiment with trematodes, snails and periphyton. Freshwater Biology, 53:322–329. doi: 10.1111/j.1365-2427.2007.01896.x

Bicudo, C. E. M., Menezes, M. (2006). Gêneros de algas de águas continentais do Brasil: chave de identificação e descrições. Editora Rima. São Carlos, Brasil.

Biodeg, J. B., Sibi, G. (2014). Biosorption of arsenic by living and dried biomass of fresh water microalgae - potentials and equilibrium studies. Journal of Bioremediation & Biodegradation, 05:02-08. doi: 10.4172/2155-6199.1000249

Biswas, G., Sundaray, J. K., Bhattacharyya, S. B., Shyne-Anand, P. S., Ghoshal, T. K., De, D., Kumar, P., Sukumaran, K., Bera, A., Mandal, B., Kailasam, M. (2017). Influence of feeding, periphyton and compost application on the performances of striped grey mullet (Mugil cephalus L.) fingerlings in fertilized brackishwater ponds. Aquaculture, 481:64–71. doi: 10.1016/j.aquaculture.2017.08.026

Cao, Y., Zhang, N. Sun, J., Li, W. (2019). Responses of periphyton on non-plant substrates to different macrophytes under various nitrogen concentrations: A mesocosm study. Aquatic Botany, 154:53–59. doi: 10.1016/j.aquabot.2019.01.003

Cavalcante, D. de H., Lima, F. R. dos S., Rebouças, V. T., Sá, M. V. C. (2017). Cultivo de juvenis de tilápia do nilo, Oreochromis niloticus em sistemas convencional, bioflocos e biofíton sob restrição alimentar. Acta Scientiarum - Animal Sciences, 39:223–228. doi: 10.4025/actascianimsci.v39i3.33574

Cavalcante, D. H., Santos-Lima, F. R., Rebouças, V. T., Sá, M. V. C. (2016). Integração dos sistemas perifíton e bioflocos no cultivo intensivo de juvenis de tilápia do Nilo. Acta Scientiarium – Animal Sciences, 38:119-125. doi:10.4025/actascianimsci.v38i2.27592

Chen, S., Yang, G. Lu, J., Wang, L. (2018). Water quality in simulated eutrophic shallow lakes in the presence of periphyton under different flow conditions. Environmental Science and Pollution Research, 25:4584–4595. doi: 10.1007/s11356-017-0747-y

Chikorela, G., Chirwa, E. R., Mzengereza, K. (2019). Optimal stocking density of Tilapia rendalli (Boulenger, 1896) for increased growth in a periphyton based aquaculture system. Journal of Fisheries and Aquatic Science, 14:33–38. doi: 10.3923/jfas.2019.33.38

Cole, A. J., Tulsankar, S. S., Saunders, B. J., Fotedar, R. (2019). Effects of pond age and a commercial substrate (the water cleanserTM) on natural productivity, bacterial abundance, nutrient concentrations, and growth and survival of Marron (Cherax cainii Austin, 2002) in semi-intensive pond culture. Aquaculture, 502:242–249. doi: 10.1016/j.aquaculture.2018.12.046

David, L. H. C., Pinho, S. M., Garcia, F. (2018). Improving the sustainability of tilapia cage farming in Brazil: an emergy approach. journal of cleaner production, 201:1012-1018. doi:10.1016/j.jclepro.2018.08.124

De-Morais, A. P. M., Abreu, P. C., Wasielesky-Jr, W., Krummenauer, D. (2020). Effect of aeration intensity on the biofilm nitrification process during the production of the white shrimp Litopenaeus vannamei (Boone, 1931) in Biofloc and clear water systems. Aquaculture, 514:02-06. doi: 10.1016/j.aquaculture.2019.734516

Fleckenstein, L. J., Tierney, T. W., Fisk, J. C., Ray, A. J. (2019). Effects of supplemental LED lighting on water quality and Pacific white shrimp (Litopenaeus vannamei) performance in intensive recirculating systems. Aquaculture, 504:219–226. doi: 10.1016/j.aquaculture.2019.01.066

Garcia, F., Romera, D. M., Sousa, N. S., Paiva-Ramos, I., Onaka, E. M. (2016). The potential of periphyton-based cage culture of nile tilapia in a brazilian reservoir. Aquaculture, 464: 229–235. doi:10.1016/j.aquaculture.2016.06.031

Gatune, C., Vanreusel, A., De-Troch, M. (2017). Sunlight and sediment improve the environment of a litter biofilm-based shrimp culture system. Aquaculture Environment Interactions, 9:73–85. doi: 10.3354/aei00213

Ge, H., Jian, L., Ping, C., Zhiquiang, C., Mingming, S., Fazhen, Z. (2017). Cultivation of green algae Platymonas helgolandica in rearing water enhances the growth performance and resistance of Litopenaeus vannamei against Vibrio parahaemolyticus infection. Aquaculture International, 25:1279–1290. doi: 10.1007/s10499-017-0113-6

Gómez, R., Lucía, A, Enriquez-Ocaña, L. F., Miranda-Baeza, A., Esquivel, B. C., López-Elías, J. A., Martínez-Córdova, L. R. (2019). Biofilm-forming capacity of two benthic microalgae, Navicula incerta and Navicula sp., on three substrates (Naviculales: Naviculaceae). Revista de Biologia Tropical, 67:599–607. doi: 10.15517/rbt.v67i3.35117

Gordillo-Guerra, J. G., Guevara, G., Reinoso-Flórez, G. (2020). A practical device for evaluating periphyton colonization dynamics in tropical shallow wetlands. Limnologica, 81:125755. doi: 10.1016/j.limno.2020.125755

Gorospe, J. R. C., Junio-Meñez, A., Southgate, P. C. (2019). Effects of shading on periphyton characteristics and performance of Sandfish, Holothuria Scabra Jaeger 1833, juveniles. Aquaculture, 512: 02-08.

Guttman, L., Boxman, S. E., Barkan, R., Neori, A., Shpige, M. (2018). Combinations of Ulva and periphyton as biofilters for both ammonia and nitrate in mariculture fishpond effluents. Algal Research, 34:235–243. doi: 10.1016/j.algal.2018.08.002

Han, W., Ma, S., Li, L., Zheng, X., Wang, X. (2018). Rheological properties of gluten and gluten-starch model doughs containing wheat bran dietary fibre. International Journal of Food Science and Technology, 53:2650–2656. doi: 10.1111/ijfs.13861

Haque, M. R., Islam, M. A., Khatun, Z., Hossain, M. A., Wahab, M. A. (2018). Effects of stocking densities of tilapia Oreochromis Niloticus (Linnaeus, 1758) with the inclusion of silver carp Hypophthalmichthys Molitrix (Valenciennes, 1844) in C/N-CP prawn Macrobrachium Rosenbergii (De Man, 1879) culture pond. Aquaculture International, 26: 523–541. doi: 10.1007/s10499-017-0229-8

Haque, M. R., Islam, M. A., Wahab, M. A., Hoq, M. E., Rahman, M. M., Azim, M. E. (2016). Evaluation of production performance and profitability of hybrid red tilapia and genetically improved farmed tilapia (GIFT) strains in the carbon/nitrogen controlled periphyton-based (C/N- CP) on-farm prawn culture system in Bangladesh. Aquaculture Reports, 4:101–110. doi: 10.1016/j.aqrep.2016.07.004

Haque, M. R., Islam, M. A., Rahman, M. M., Shirin, M. F., Wahab M. A., Azim, M. E. (2015). Effects of C/N ratio and periphyton substrates on pond ecology and production performance in giant freshwater prawn Macrobrachium rosenbergii (De Man, 1879) and tilapia Oreochromis niloticus (Linnaeus, 1758) polyculture system. Aquaculture Research, 46: 1139–1155. doi: 10.1111/are.12270

Huchette, S. M. H., Beveridge, M. C. M., Baird, D. J., Ireland, M. (2000). The impacts of grazing by tilapias (Oreochromis Niloticus L.) on periphyton communities growing on artificial substrate in cages. Aquaculture, 186: 45–60. doi: 10.1016/S0044-8486(99)00365-8

Jha, S., Rai, S., Shrestha, M., Diana, J. S., Mandal, R. B., Egna, H. (2018). Production of Periphyton to enhance yield in polyculture ponds with carps and small indigenous species. Aquaculture Reports, 9:74–81. doi: 10.1016/j.aqrep.2018.01.001

Jiang, W., Ren, W., Li, L., Dong, S., Tian, X. (2020). Light and carbon sources addition alter microbial community in biofloc-based Litopenaeus vannamei culture systems. Aquaculture, 515:02-09. doi: 10.1016/j.aquaculture.2019.734572

Keshavanath, P., Gangadhar, B., Ramesh, T. J., Van-Dam, A. A., Beveridge, M. C. M., Verdegem, M. C. J. (2002). The Effect of periphyton and supplemental feeding on the production of the indigenous carps Tor Khudree and Labeo Fimbriatus. Aquaculture, 213:207–218. doi: 10.1016/S0044-8486(02)00034-0

Khatoon, H., Fatimah, Y., Sanjoy, B., Mohamed, S., Japar, S. B. (2007). Formation of periphyton biofilm and subsequent biofouling on different substrates in nutrient enriched brackishwater shrimp ponds. Aquaculture, 273:470–477. doi: 10.1016/j.aquaculture.2007.10.040

Kumar, S., Anand, P. S. S., Ravichandran, P., Panigrahi, A., Dayal, J. S., Raja, R. A., Deo, D., Ghoshal, T. K., Ponniah, A. G. (2015). Effect of periphyton on microbial dynamics, immune responses and growth performance in black tiger shrimp Penaeus monodon Fabricius, 1798. Indian Journal of Fisheries, 62:67–74

Lalramchhani, C., Paran, B. C., Anand, P. S. S. S., Ghoshal, T. K., Kumar, P., Vijayan, K. K. (2020). Integrated rearing system approach in the farming of mud crab, shrimp, fish, oyster and periphyton in bracksihwater pond. Aquaculture Research, 2019: 1–8. doi: 10.1111/are.14758

Larned, S. T. (2010). A prospectus for periphyton: Recent and future ecological research. Journal of the North American Benthological Society, 29:182–206. doi: 10.1899/08-063.1

Levy, A., Milstein, A., Neori, A., Harpaz, S., Shpigel, M, Guttman, L. (2017). Marine periphyton biofilters in mariculture effluents: Nutrient uptake and biomass development. Aquaculture, 473:513–520. doi: 10.1016/j.aquaculture.2017.03.018

Li, Q., Gu, P., Ji, X., Li, H., Zhang, J., Zheng, Z. (2020). Response of submerged macrophytes and periphyton biofilm to water flow in eutrophic environment: Plant structural, physicochemical and microbial properties. Ecotoxicology and Environmental Safety, 189:02-09. doi: 10.1016/j.ecoenv.2019.109990

Lopez, A. R., Funk, D. H., Buchwalter, D. B. (2017). Arsenic (V) bioconcentration kinetics in freshwater macroinvertebrates and periphyton is influenced by pH. Environmental Pollution, 224:82–88. doi: 10.1016/j.envpol.2016.12.066

Lu, H., Feng, Y., Wang, J., Wu, Y., Shao, H., Yang, L. (2016). Responses of Periphyton morphology, structure, and function to extreme nutrient loading. Environmental Pollution, 214:878–884. doi: 10.1016/j.envpol.2016.03.069

Martinez-Porchas, M., Ezquerra-Brauer, M., Mendoza-Cano, F., Chan-Higuera, J. E., Vargas-Albores, F., Martinez-Córdova, L. R. (2020). Effect of supplementing heterotrophic and photoautotrophic biofloc, on the production response, physiological condition and post-harvest quality of the whiteleg shrimp, Litopenaeus vannamei’, Aquaculture Reports, 16:02-09. doi: 10.1016/j.aqrep.2019.100257

Milstein, A., Peretz, Y., Harpaz, S. (2008). Comparison of periphyton grown on different substrates as food for organic tilapia culture. Israeli Journal of Aquaculture - Bamidgeh, 60:243–252

Mohapatra, B. C., Bikash, C., Hrushikesha S., Sudeep, K. M., Sacharita, L., Anantharaja, K., Pallipura, Jayasankar. (2016). Growth of periphyton on different plastic materials in freshwater medium. Pelagia Research Library Advances in Applied Science Research, 7:228–234

Moschini, C.V. (1999). Importância, estrutura e dinâmica da comunidade perifítica nos ecossistemas aquáticos continentais. In: Pompêo, M. L. M. Perspectivas na limnologia do Brasil. Editora União. São Luís, Brasil. pp.01-11.

Mridula, R. M., Manissery, J. K., Keshavanath, P., Shankar, K. M., Nandeesha, M. C., Rajesh, K. M. (2003). Water quality, biofilm production and growth of fringe-lipped carp (Labeo fimbriatus) in tanks provided with two solid substrates. Bioresource Technology, 87:263–267. doi: 10.1016/S0960-8524(02)00228-6

Rai, S., Yi, Y. (2012). Nibbling Frequency of carps in periphyton-based aquaculture systems with and without supplemental feed. Israeli Journal of Aquaculture – Bamidgeh, 64:02-06.

Ren, W., Li, L., Dong, S., Tina, X., Xue, Y. (2019). Effects of C/N ratio and light on ammonia nitrogen uptake in Litopenaeus vannamei culture tanks. Aquaculture, 498:123–131. doi: 10.1016/j.aquaculture.2018.08.043

Richard, M., Trottier, C., Verdegem, M. C. J., Hussenot, M. E. (2009). Submersion time, depth, substrate type and sampling method as variation sources of marine periphyton. Aquaculture, 295:209–217. doi: 10.1016/j.aquaculture.2009.07.005

Ruby, P., Ahilan, B., Prabu, E., (2018) Periphyton based aquaculture: A review. Aqua Trop, 33:51–64.

Saikia, S. K., Das, D. N. (2009). Potentiality of periphyton-based aquaculture technology in rice-fish environment. Journal of Scientific Research, 1:624–634. doi: 10.3329/jsr.v1i3.2114

Santhana-Kumar, V., Pandey, P. K., Anand, T., Bhuvaneswari, R., Kumar, S. (2017). Effect of periphyton (aquamat) on water quality, nitrogen budget, microbial ecology, and growth parameters of Litopenaeus vannamei in a semi-intensive culture system. Aquaculture, 479:240–249. doi: 10.1016/j.aquaculture.2017.05.048

Schveitzer, R., Arantes, R., Baloi, M F., Costódio, P. F. S., Arana, L. V., Seiffert, W. Q., Andreatta, E. R. (2013). Use of artificial substrates in the culture of Litopenaeus vannamei (Biofloc System) at different stocking densities: Effects on microbial activity, water quality and production rates. Aquacultural Engineering, 54:93–103. doi: 10.1016/j.aquaeng.2012.12.003

Solak, N. C., Kaleli, A., Baytut, Ö. (2016). The distribution of cymbelloid diatoms in yalova runningwaters. Turkish Journal of Fisheries and Aquatic Sciences, 16:953–959. doi: 10.4194/1303-2712-v16

Uddin, M. S., Farzana, A., Fatema, M. K., Azim, M. E., Wahab, M. A., Verdegem, M. C. J. (2007). Technical evaluation of tilapia (Oreochromis Niloticus) monoculture and tilapia-prawn (Macrobrachium Rosenbergii) polyculture in earthen ponds with or without substrates for periphyton development. Aquaculture, 269:232–240. doi: 10.1016/j.aquaculture.2007.05.038

Van-Dam, A. A., Beveridge, M. C. M., Azim, M. E., Verdegem, M. C. J. (2002). The potential of fish production based on periphyton. Reviews in Fish Biology and Fisheries, 12:1–31. doi: 10.1023/A:1022639805031

Wei, Y. F., Wang, A. L., Liao, S. A. (2020). Effect of different carbon sources on microbial community structure and composition of ex-situ biofloc formation. Aquaculture, 515:02-07.doi: 10.1016/j.aquaculture.2019.734492

Wolska, M., Mazurkiewicz-Zapałowicz, K. (2013). Parasites of zooplankton and periphyton assemblages in the littoral zone of lakes in Drawa National Park, Poland. Acta Mycologica, 48:51–59. doi: 10.5586/am.2013.007

Wu, Y. (2017). Periphyton: functions and application in environmental remediation. Editora Elsevier. China.

Xu, W. J., Morris, T. C., Samocha, T. M. (2016). Effects of C/N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system. Aquaculture, 453:169–175. doi: 10.1016/j.aquaculture.2015.11.021

Descargas

Publicado

2022-07-31